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Abstract 
The objective of this experiment was to become familiar with analyzing and visualizing a multiple degree                
of freedom vibrational system. In addition to learning how to apply different analysis techniques (i.e.,               
Lagrange’s equation, Newton’s Law and MATLAB) in solving the system, a design suggestion to reduce               
the maximum machine tool head vibration by 25% was formulated through an analysis. To meet the                
design criteria, changing the value of stiffness from 2000 lb/in to 400 lb/in was found to have the best       k3             
effect with little system repercussions, and required the least change in the magnitude of the initial value                 
(133.33% difference). The percent differences for different design changes can be seen in Table 1.               
Meanwhile, adjusting stiffness was found to be the least favorable method as it would require the most   k2                
change (193.02% difference) and caused additional vibration throughout the system. 

1. Introduction 

The purpose of the project was to determine the vibrational response of the 3-DOF system displayed in                 
Figure 1.1. Figure 1.2 is the simplified diagram, which was used for EOM derivations and steady-state                
vibration calculations. Additionally, the project advanced an understanding of the relationship between            
the spring constant and vibrational response, as well as the damping coefficient and vibrational response,               
as different ways of reducing the maximum response of the machine tool head ( ) were compared.x3   

2. Experimental Methods 
The analysis of this system began with deriving the equations of motion (EOM) using Lagrange’s               
equation, and using those EOMs to solve for the steady-state response of the system through the                
mechanical impedance method and Cramer’s Rule. The EOMs were verified using Newton’s Second             
Law. Then the steady-state responses were solved and plotted in MATLAB, and the solutions were               
compared to ensure accuracy. Using code to iteratively solve for the maximum response of the tool head,                 
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a value of that would ensure a 25% reduction in amplitude of the tool head was determined. Lastly,   k2                
other methods of reducing the amplitude of vibration of the tool head were investigated and compared in                 
Table 1. 

3. Experimental Data 
The derivation of the EOMs was conducted using kinetic energy equations to describe masses, potential               
energy equations to describe springs, and the Rayleigh dissipation function to describe dampers, and then               
substituting those equations into Lagrange’s Equation, given below: 

( ) ) ) )d
dt

∂T
∂ẋi

− ( ∂xi

∂T + ( ∂R
∂ẋi

+ ( ∂xi

∂V = F i  

Where T is the equation for kinetic energy, R is Rayleigh’s dissipation function, and V is the potential                  
energy function.  
 
The EOM was determined to be, in matrix form: 

 
Next, the steady-state vibration of the system was calculated by defining the mechanical impedance              
matrix as: 

 
The EOM was rewritten as: 

 
Once the equation above was solved for values of utilizing Cramer’s rule, the steady-state solution wasX j  
calculated by using the following: 

 
Keeping only the real numbers to describe the actual vibration of the system, and rewriting the equations 
in terms of a magnitude and a phase angle, the steady-state vibration was determined to be: 

 
The following code was used to solve and verify the steady-state motions of the system. Plots of the                  
individual and system responses were also generated to visualize the motion. 
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Figure 3.1. Plots of the Steady-State Response of System  
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4. Theory and Analysis 
After solving the system, different values of that would decrease the amplitude of the machine tool       k2          
head ( ) by 25% (i.e., from a value of 0.1946 in. to 0.1459 in.) were tested. The first idea was to initiate x3                      
a trial-and-error process, which was a failure in that the new values of guessed (1000 lb/in, 150,000             k2     
lb/in, 1,000,000 lb/in) all returned values above 0.190 in. for . The second approach was to generate          x3        
two matrices in MATLAB --one of potential values from 0 to 1,000,000 lb/in in increments of 100       k2           
lb/in and one of the corresponding values-- using the following additions and edits to the existing code.x3   

 

 

 

Figure 4.1. Maximum Responses of the Tool Head at Different Valuesk2  
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Then the relationship between and was plotted, as seen in Figure 4.1. The pattern was remarkable.    k2  x3             
The amplitude of drastically increased, then went through a valley over an intermediate set of values   x3               
with a minimum at 0.1291, and then for extremely large values leveled off asymptotically around 0.194.                
The two values of that provided an acceptable ( .0146) are displayed in the bottom two quadrants    k2      x3 ≈         
of the figure. The hypothesis is that for those extremely large spring constants, the spring stops acting as a                   
shock absorption device and begins to act like a rigid body, which offers little spring action, and explains                  
the asymptotic behavior towards the right side of the graph. Overall, it was found that reducing the                 
amplitude of could be achieved by increasing the spring constant to either 28,155 lb/in or 30,020  x3          k2        
lb/in. Similarly, other ways of reducing  were investigated, and documented in Table 1.x3  

Table 1. Comparison of Isolated Vibration Reduction Methods 

Variable Manipulated Initial Value  New Value1 % difference2 

k1  5000 lb/in Not attainable3 N/A 

k2  500 lb/in 28155 lb/in, 30020 lb/in 193.02%, 193.45% 

k3  2000 lb/in 400 lb/in, 10030 lb/in 133.33%, 133.50% 

c1  10 lb-sec/in Not attainable N/A 

c2  10 lb-sec/in Not attainable N/A 

c3  10 lb-sec/in 61 lb-sec/in 143.66% 

Footnotes: 
1. The approximate required values in order to reduce the maximum response of  by 25% (i.e., = 0.14594 in.) x3  x3  
2. Percent difference between the new and initial values as a result of achieving the desired vibration reduction is calculated using: 

 
3. It is not possible to achieve a 25% reduction in the response of  given the isolated manipulation of this variable. x3   

 

From the results of the isolated vibration reduction trials it was determined that the three different ways to                  
achieve a 25% reduction in the vibration response were by individually manipulating , , and .        x3      k2 k3   c3  
The effect of changing the values of these variables in order to achieve this goal on the vibration response                   
of the entire system is shown in Figure 4.2. Clearly, changing the stiffness to the required value does             k2      
not have a positive effect on the response of the machine tool base and floor. This method would not be                    
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favorable as it also entails the largest percent difference values, meaning that it involves the most drastic                 
changes in the magnitude of the spring stiffness. The second method investigated was changing ,              k3  
which appears to reduce the maximum response of not only the machine tool head but also the base.                  
Hence, this method is an improvement from the base case and corresponds to a less drastic change in the                   
magnitude of the spring stiffness (i.e., 133.33% difference). Lastly, the damping coefficient was            c3  
changed and it appeared to change only the maximum response of the machine tool head, which is                 
desirable if the initial response of the other two parts of the machine is expected. Nevertheless, this                 
method involves a larger change in the magnitude of the damping coefficient (i.e., 143.66% difference). 

Figure 4.2. Responses Under Various Changes to System Constants 

5. Conclusions 

From the results of the steady-state solutions, it is obvious that the tooling head experiences the most                 
motion, and then the base, and then the floor, due to the force acting directly on the tooling head. All of                     
the amplitudes were less than two tenths of an inch, which indicates that the machine is not shaking on the                    
floor, but the response of the entire system may want to be kept in mind when thinking of tolerances.                   
Hence, when looking to reduce the vibration of the tooling head other options should be considered                
beyond altering , since it has feedback effects on the machine tool base and causes it to vibrate at a  k2                   
higher amplitude. The better method would be to adjust or , which are more directly connected to         k3   c3        
the tooling head and therefore require a smaller change in the magnitude of their values to achieve a 25%                   
reduction in the maximum response thereof.  

The best method would be to adjust from 2000 lb/in to 400 lb/in, as it requires the least change in       k3              
magnitude, it has a damping effect on the other system components, and would be the easiest to                 
manipulate in a real manufacturing setting. Still, this recommendation is based on an oversimplification of               
the actual mechanical system, which assumes a linear relationship in the effects of the spring and dampers                 
and that it can be modeled as a parallel circuit. For further study, the analysis of non-isolated vibration                  
reduction could be included in the investigation (i.e., manipulating and simultaneously) and an         k3   c3    
analysis of these changes on the natural frequency of vibration of the system would also be useful.  
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7. Sample Calculations 
[Primary Contributor: Justin Powers] 

These calculations expand on the derivation of the EOM in the Experimental Data section: 

 
( ) ) ) )d

dt
∂T
∂ẋi

− ( ∂xi

∂T + ( ∂R
∂ẋi

+ ( ∂xi

∂V = F i  
 

Where T is the equation for kinetic energy, R is Rayleigh’s dissipation function, and V is the potential                  
energy function.  

Kinetic Energy Component 

Kinetic Energy Equation Matrix Form 

 
m ẋ m ẋ m ẋ  T = 2

1
f

2
1 + 2

1
b

2
2 + 2

1
h

2
3  

 

From lecture slides 19-21, slide 8[2]: 
 

; differentiating and concatenating, δ [M ]ẋ ẋ [M ]δ ẋ∂T
∂ẋi

= 2
1

i
T + 2

1 T
i = M i ( ) M ][ẍ]  d

dt ∂ẋ 

∂T = [  

= 0, as  has no dependence on , only .∂xi

∂T  T x  ẋ  

Potential Energy Component 

Potential Energy Equation Matrix Form 

 
k x k (x ) k (x )V = 2

1
1

2
1 + 2

1
2 2 − x1

2 + 2
1

3 3 − x2
2  

 

From lecture slides 19-21, slide 8[2]: 
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; concatenating, x  ∂xi

∂V = K i K][x]  ∂x 

∂V = [  

Rayleigh’s Dissipation Function[1] 

Rayleigh Function Matrix Form 

 
c ẋ c (ẋ ) c (ẋ )R = 2

1
1

2
1 + 2

1
2 2 − ẋ1

2 + 2
1

3 3 − ẋ2
2  

 

From the kinetic energy equation calculations above: 
 

; concatenating, δ [C]ẋ ẋ [C]δ ẋ∂R
∂ẋi

= 2
1

i
T + 2

1 T
i = C i ) C][ẋ]  ( ∂R

∂ẋ 
= [  

 
To derive EOM, substitute the concatenated partial derivatives into Lagrange’s Equation. 
 

 → ( ) ) ) )d
dt

∂T
∂ẋi

− ( ∂xi

∂T + ( ∂R
∂ẋi

+ ( ∂xi

∂V = F i M ][ẍ] C][ẋ] K][x] F ]  [ − 0 + [ + [ = [  

 

From Section 5.6 of the Mechanical Vibrations textbook, the forcing function can be written as: 
 

(t) ef 3 = F 30
iωt  

 
Furthermore, the steady-state solution can be assumed as: 

 
(t) ef 3 = F 30

iωt  
Thus, the EOM becomes 
 

 

Given the definition of mechanical impedance, the previous equation becomes 

 
where 
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Hence, using Cramer’s rule, the solution of the vector X can be obtained as follows: 

 
This result is used to calculate the steady-state solution using the following equation: 

 
In this way, the following actual steady-state responses are calculated: 

 
From lecture slides 3-4, the alternative solution form of the EOM leads to the following responses: 

  
Lastly, the percent difference between new and initial values of variables manipulated to achieve a 25% 
reduction in the vibration response of the machine tool head was calculated as such: 
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