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1. Abstract 
The objective of this project was to become familiarized with finite-difference methods in solving heat 
transfer problems, as well as the accuracy associated with these methods. Convective heat transfer was an 
important consideration in the design of the finite difference equations for boundary and interior nodes, in 
addition to one-dimensional heat conduction. The approach taken in this report involves the design of 
these equations via the general heat equation. Then, these equations were inputted to MATLAB, along 
with given parameters, to iteratively generate temperature profiles at a given time and the temperature 
distribution within the plate over time (see Appendix 6.1). An accuracy test was constructed to explore 
the relationship between the grid size chosen to cover the domain of the plate and the resulting 
temperature distribution.  
 
The initial grid chosen to cover the domain of the plate consisted of 10 equally spaced nodes. This design 
proved to be insufficiently fine in that a grid consisting of 100 nodes produced a noticeably different 
temperature distribution. Hence, a grid consisting of 100 nodes was used to construct the temperature 
profiles in the plate at 50s, 100s and at steady state. The accuracy of these results was confirmed via an 
additional accuracy test shown in Figure 6, which shows that the two temperature distributions converge. 
Furthermore, the temperature profiles (see Figure 2-4) in the plate show the overwhelming effect of the 
left boundary conditions compared to the right boundary conditions given h1 approaches ∞ and h2 = 0 
W/m2K. At 50s, the left boundary is at 0 °C and the middle and right boundary remain at the initial 30 °C. 
Only after 1000s does the plate begin to approach steady state as the temperature distribution converges to 
a uniform 0 °C. At 1000s, the left boundary is at 0 °C, the middle node is at approximately 4.5 °C and the 
right boundary is at approximately 6.5 °C. This trend shows that as h1 approaches ∞, the plate reaches 
steady state quicker as the temperature distribution across the plate uniformly reaches 0 °C.  
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2. Equations 
The calculation of the temperature distribution across the plate required three unique equations: one 
equation for temperatures at node 1, one for the interior nodes and one for the maximum node. The 
derivation of the following equations can be found in Appendix 6.2.  

In order to calculate the temperature of the left boundary of the plate over time, an energy balance method 
was used to derive the following equation: 

𝑇!!!! = 𝑇!! −
∆!

!!!∆!
[ℎ! 𝑇!! − 𝑇!,! + !

∆!
𝑇!! − 𝑇!! ]     (1) 

Similarly, equation 2 was used to calculate the temperature of all interior nodes over time: 

𝑇!!!! = 𝑇!! +
!∆!

!!! ∆! ! [𝑇!!!
! − 2𝑇!! + 𝑇!!!! ]     (2) 

The temperature distribution at the right boundary of the flat plate was found using the following: 

𝑇!"#$!!! = 𝑇!"#$! + ∆!
!!!∆!

[ !
∆!

𝑇!"#$!!! − 𝑇!"#$! − ℎ!(𝑇!"#$! − 𝑇!,!)]    (3) 

In the equations above, the subscript of T refers to the node and the superscript defines time. Δt is the time 
step manipulated to satisfy the stability criterion, and Δx is the distance between nodes. The thermal 
conductivity of the plate, the density of the fluids and the specific heat of the fluids are defined by k, ρ, cp, 
respectively. Lastly, h1 and h2 are the convection coefficients of the fluids, and T1,∞ and T2,∞ are the 
temperatures of those fluids (see Figure 1). 

3. Experimental Data & Results 
 

 

 

 

 

 

 

 

Figure 1: Project Problem Statement 
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Table 1: Properties of Flat Plate and Fluids 

k 1 W/m*K 
ρ 2 kg/m3 

c 700 J/kg*K 
 

 

 

 

Figure 2: Temperature Profile in the Plate at 50s Using 100 Nodes 
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Figure 3: Temperature Profile in the Plate at 100s Using 100 Nodes 

 

Figure 4: Temperature Profile in the Plate at Steady State Using 100 Nodes 
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Figure 5: Temperature Distribution in Plate over Time Using 100 nodes 

 

Figure 6: Accuracy Test of Chosen Grid 
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4. Discussion 
From the results of the finite-difference method analysis on the plate, it is apparent that the left boundary 
conditions have an overwhelming effect on the temperature distribution along the x-axis of the plate with 
respect to time. This trend is noted in figure 5 where the temperature distribution was constructed using a 
grid with 100 nodes. It is important to note that left boundary condition stating that h1 approaches ∞ was 
not interpreted literally, but rather a large enough convection coefficient was used to simulate the effect of 
an infinite value. In this case, h1 = 50,000 W/m2K was used. The reason that infinity cannot be used in the 
finite difference calculations is related to the stability criterion of the solution. At an infinite value of h, 
the time step, Δt, required to achieve a stable solution is so small that it would not be feasible to run the 
code for the purpose of this analysis. Nevertheless, the results demonstrate that the effect of the right 
boundary fluid is negligible compared to the left boundary fluid given h2 = 0 W/m2K, as expected. 

Furthermore, the temperature profile in the plate at 50s, 100s and at steady state can be seen in Figure 2,3 
and 4, respectively. These three plots are based on a grid consisting of 100 nodes equidistant from each 
other along the x-axis of the plate. Due to the assumption of one-dimensional heat conduction along the 
plate, each node along the length of the plate represents a constant temperature along the y-axis. For 
instance, in figure 2 the temperature profile at 50s indicates that the left boundary reaches 0 °C while the 
right boundary remains at 30 °C. Therefore, the entire left side of the plate is 0 °C after this time and the 
entire right side is 30 °C. The plate gradually reaches steady state as can be seen in Figure 5, as the 
middle and right side of the plate converge to 0 °C after 1000s. Figure 4 shows that after 1000s the 
temperature profile in the plate uniformly reaches lower temperatures. Namely, the right boundary does 
not exceed 7 °C. Figure 5 supports that this convergence will eventually lead to a steady state after 
approximately 30 minutes, and the temperature profile in the plate will no longer be time dependent. At 
steady state, the temperature profile along the plate will be a flat line at 0 °C (i.e., uniform temperature).  

In order to be sure of the data presented above, and thereby the analysis drawn from it, an accuracy test 
was constructed to show that a grid consisting of 100 nodes is fine enough. To achieve this, a second grid 
consisting of 200 nodes was used to generate a new temperature distribution in the plate over 100s. The 
use of a finer grid to calculate the second temperate distribution required a smaller time step as nodes 
increased to 200, resulting in a longer run time for the code. This new temperature distribution was 
plotted alongside the old one generated from 100 nodes in figure 5. As figure 6 shows, the two 
aforementioned temperature distributions converge seamlessly according to the location of the boundary 
and middle nodes. Hence, it is not only accurate to use the temperature distribution and profiles produced 
by a grid with 100 nodes, but also more efficient. 

5. Conclusion 
Heat conduction in the plate was considered one-dimensional for the purpose of this project, but there are 
obvious flaws in the assumptions made in this report. Namely, one would expect for temperature to vary 
along the y-axis of the plate due to an inconsistent flow over the plate. Furthermore, the convection 
coefficient used in place of infinity was arbitrarily chosen and only approximates the effect of an infinite 
value for h1. Given an actual infinite convection coefficient on the left boundary, the entire plate would 
almost instantly reach a uniform temperature of 0 °C. However, the value for h1 used in the analysis 
above produces intuitive results in terms of the trends associated with one-sided convective heat transfer 
and one-dimensional conduction.   
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6. Appendix 
[Appendix 6.1] 

%% Finite difference analysis of 1D transient heat transfer (code) 
clear 
clc 
close all 
% Define/initialize parameters k, rho, cp, dx and q here 
k = 1;               %[W/m*K], thermal conductivity 
rho = 2;             %[kg/m^3], density 
cp = 700;            %[J/kg*K], specific heat  
L = 1;               %[m], length of flat plate 
nodeNumber = 100;    %number of nodes 10 (change for accuracy test) 
dx = L/(nodeNumber-1);   %[m], distance between nodes in m 
h1 = 50000;          %[W/m^2*k], left side convective coefficient 
h2 = 0;              %[W/m^2*k], right side convective coefficient 
Ti = 30;             %[deg C], initial uniform temp of plate 
T1inf = 0;           %[deg C], left side fluid temp 
T2inf = 50;          %[deg C], right side fluid temp 
  
% Outer for loop for time integration 
dt = 0.0002; % [s], time step 
time = 0:dt:1000; %[s], time vector (change for 50s, 100s and steady state) 
TempValues = NaN(length(time), nodeNumber); % preallocate memory (rows, 
columns) 
TempValues(1, :) = 30; %[deg C], initial conditions 
  
%for loop, starting at row 2 (i.e., after initial temp values) 
for p = 2:length(time) % for all time values 
 % Inner for loop for calculating nodal temperatures 
 for m = 1:nodeNumber % for all nodes, goes m = 1,2,3,4, etc. and repeats 
back to outer loop 
     if m == 1  %equation for updating time and temp at node 1 
        TempValues(p,m) = TempValues(p-1,m)+(dt/(rho*dx*cp))*((-
h1*(TempValues(p-1,m)-T1inf))-((k/dx)*(TempValues(p-1,m)-TempValues(p-
1,m+1)))); 
     elseif m == 100 %equation for updating time and temp at max node 
         TempValues(p,m) = TempValues(p-
1,m)+(dt/(rho*dx*cp))*((k/dx)*(TempValues(p-1,m-1)-TempValues(p-1,m))-
h2*(TempValues(p-1,m)-T2inf)); 
     else %equation for updating time and temp at all interior nodes 
         TempValues(p,m) = TempValues(p-
1,m)+((k*dt)/(rho*cp*(dx)^2))*(TempValues(p-1,m-1)-2*TempValues(p-
1,m)+TempValues(p-1,m+1)); 
     end 
 end 
end 
  
%% Plot the temperature distributions over time 
figure; 
hold on; 
aa = plot(time,TempValues(:,1)); 
ab = plot(time,TempValues(:,50)); 
ac = plot(time,TempValues(:,100)); 
title('Flat Plate Temperature vs Time'); 
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s=['Temperature (' char(176) 'C)']; 
ylabel(s); 
xlabel('Time (Seconds)'); 
legend('Left Side','Middle', 'Right Side'); 
hold off 
  
%% Temperature profiles at 50s, 100s, steady state 
dist = linspace(0,1,nodeNumber); %distance along the plate in the x-direction 
figure; 
hold on; 
ba = plot(dist, TempValues(250001,:)); 
title('Flat Plate Temperature Profile at 50s'); 
s=['Temperature (' char(176) 'C)']; 
ylabel(s); 
xlabel('Distance (m)'); 
  
figure; 
hold on; 
bb = plot(dist, TempValues(500001,:)); 
title('Flat Plate Temperature Profile at 100s'); 
s=['Temperature (' char(176) 'C)']; 
ylabel(s); 
xlabel('Distance (m)'); 
  
figure; 
hold on; 
bc = plot(dist, TempValues(5000001,:)); 
title('Flat Plate Temperature Profile at Steady State'); 
s=['Temperature (' char(176) 'C)']; 
ylabel(s); 
xlabel('Distance (m)'); 
  
%% Accuracy Test 
nodeNumber2 = 200; %construct distrubution using finer grid 
dx2 = L/(nodeNumber2-1); 
dt2 = 0.0002; %adjust time step as needed to satisfy stability criterion 
time2 = 0:dt2:100; 
TempValuesfine = NaN(length(time2), nodeNumber2); % preallocate memory (rows, 
columns) 
TempValuesfine(1, :) = 30; %[deg C], initial conditions 
  
%for loop, starting at row 2 (i.e., after initial temp values) 
for p = 2:length(time2) % for all time values 
 % Inner for loop for calculating nodal temperatures 
 for m = 1:nodeNumber2 % for all nodes, goes m = 1,2,3,4, etc. and repeats 
back to outer loop 
     if m == 1  %equation for updating time and temp at node 1 
        TempValuesfine(p,m) = TempValuesfine(p-1,m)+(dt/(rho*dx2*cp))*((-
h1*(TempValuesfine(p-1,m)-T1inf))-((k/dx2)*(TempValuesfine(p-1,m)-
TempValuesfine(p-1,m+1)))); 
     elseif m == 200 %equation for updating time and temp at max node 
         TempValuesfine(p,m) = TempValuesfine(p-
1,m)+(dt/(rho*dx2*cp))*((k/dx2)*(TempValuesfine(p-1,m-1)-TempValuesfine(p-
1,m))-h2*(TempValuesfine(p-1,m)-T2inf)); 
     else %equation for updating time and temp at all interior nodes 
         TempValuesfine(p,m) = TempValuesfine(p-
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1,m)+((k*dt)/(rho*cp*(dx2)^2))*(TempValuesfine(p-1,m-1)-2*TempValuesfine(p-
1,m)+TempValuesfine(p-1,m+1)); 
     end 
 end 
end 
  
%% Plot the accuracy test 
figure; 
hold on; 
aa2 = plot(time,TempValues(:,1)); 
ab2 = plot(time,TempValues(:,50)); 
ac2 = plot(time,TempValues(:,100)); 
ad = plot(time2,TempValuesfine(:,1)); 
ae = plot(time2,TempValuesfine(:,100)); 
af = plot(time2,TempValuesfine(:,200)); 
title('Accuracy Test: Flat Plate Temperature vs Time'); 
s=['Temperature (' char(176) 'C)']; 
ylabel(s); 
xlabel('Time (Seconds)'); 
legend('Left: 100 Nodes','Middle: 100 Nodes', 'Right: 100 Nodes', ... 
    'Left: 200 Nodes','Middle: 200 Nodes','Right: 200 nodes'); 
hold off 
  
% End script 
 

[Appendix 6.2] 

Equation 1: 

𝜌𝑉𝑐!
𝑑𝑇
𝑑𝑡

= 𝑞!"# − −𝑘𝐴
𝑑𝑇
𝑑𝑥

 

𝜌𝑉𝑐!
𝑇!!!! − 𝑇!!

Δ𝑡
= −ℎ!𝐴 𝑇!! − 𝑇!,! +

𝑘𝐴
∆𝑥

𝑇!! − 𝑇!!  

𝑇!!!! − 𝑇!! =
∆𝑡
𝜌𝑉𝑐!

[−ℎ!𝐴 𝑇!! − 𝑇!,! −
𝑘𝐴
∆𝑥

𝑇!! − 𝑇!! ] 

Where V = A* Δx; thus: 

𝑇!!!! = 𝑇!! −
∆!

!!!∆!
[ℎ! 𝑇!! − 𝑇!,! + !

∆!
𝑇!! − 𝑇!! ]     (1) 

Equation 2: 

𝜌𝑉𝑐!
𝑑𝑇
𝑑𝑡

= −𝑘𝐴
𝑑𝑇
𝑑𝑥

− −𝑘𝐴
𝑑𝑇
𝑑𝑥

 

𝜌𝑉𝑐!
𝑇!!!! − 𝑇!!

Δ𝑡
= −

𝑘𝐴
Δ𝑥

𝑇!! − 𝑇!!!! +
𝑘𝐴
∆𝑥

𝑇!!!! − 𝑇!!  
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𝑇!!!! − 𝑇!! =
𝑘𝐴∆𝑡
𝜌𝑉𝑐!Δ𝑥

[𝑇!!!! − 2𝑇!! + 𝑇!!!! ] 

𝑇!!!! = 𝑇!! +
!∆!

!!! ∆! ! [𝑇!!!
! − 2𝑇!! + 𝑇!!!! ]     (2) 

Equation 3: 

𝜌𝑉𝑐!
𝑑𝑇
𝑑𝑡

= −𝑘𝐴
𝑑𝑇
𝑑𝑥

+ 𝑞!" 

𝜌𝑉𝑐!
𝑇!"#$!!! − 𝑇!"#$!

Δ𝑡
= −

𝑘𝐴
∆𝑥

𝑇!"#$! − 𝑇!"#$!!! − ℎ!𝐴(𝑇!"#$! − 𝑇!,!) 

𝑇!"#$!!! − 𝑇!"#$! =
∆𝑡
𝜌𝑉𝑐!

[
𝑘𝐴
∆𝑥

𝑇!"#$!!! − 𝑇!"#$! −ℎ!𝐴 𝑇!"#$! − 𝑇!,! ] 

𝑇!"#$!!! = 𝑇!"#$! + ∆!
!!!∆!

[ !
∆!

𝑇!"#$!!! − 𝑇!"#$! − ℎ!(𝑇!"#$! − 𝑇!,!)]    (3) 

 


