
MATLAB Code vs. FEM Analysis of Truss

Abstract: For the roof truss below, MATLAB code was used to calculate the displacements and

reaction forces at each joint, stress and strain in each truss, and results were compared to

simulation results via ANSYS. Then, the MATLAB code was revised to find the maximum load

capacity given a safety factor of 1.5. Optimization results were compared to ANSYS.

Figure 1. Double Fink Roof Truss

First, the given material properties were identified. See Table 1 for a summary of the given

properties. The first part of the solution involved calculating the displacements and reaction

forces at each node of the roof truss, as well as the stress and strain in each truss element. These

values were calculated using MATLAB code and an ANSYS simulation of the roof truss. Before

analyzing the data, it is important to describe the labeling scheme used to design the roof truss.

As shown in Figure 9, the roof truss consists of 11 nodes (i.e., 22 global DOF) and 19 truss

elements. In other words, for each node “i” its associated global DOF are 2i-1 and 2i. Hence,

node 1 has global DOF of 1 and 2, node 2 has global DOF of 3 and 4, etc. Odd values of DOF

correspond to the nodal x-direction while even values correspond to the nodal y-direction.

Table 1. Roof Truss Material and Cross-Section Properties

Cross-Section Dimensions 5cm x 5cm

Material Name Pine Wood

Young’s Modulus 9GPa

Poisson’s Ratio 0.3

Ultimate Tensile Strength 96.5MPa

Compressive Yield Strength 37MPa

Figure 2. Roof Truss Labeling Scheme

Given the labeling scheme described above, the data outputted by the MATLAB code can be

interpreted. Table 2 shows the directional displacements and total displacements at each node in

units of centimeters. The directional displacement vector has 22 lines corresponding to the 22

global DOF. For instance, DOF 1 and 2 indicate the x- and y-direction displacement at node 1,

respectively. On the other hand, the total displacement vector has 11 lines corresponding to 11

nodes. Similarly, Table 3 shows the stress, in units of megapascals, and strain in each truss

element. These vectors have 19 lines each, corresponding to the 19 truss elements that make up

the system. See Figure 2 to identify the truss element referred to by each line.

Table 2. Directional and Total Displacements for -6kN Load

Node DOF Directional Displacement

(cm)

Total Displacement (cm)

1
1 0

0
2 0

2
3 0.7060

1.9666
4 -1.8355

3
5 0.2250

2.0069
6 -1.9942

4
7 0.6814

2.3673
8 -2.2671

5
9 0.4050

2.3410
10 -2.3057

6
11 0.4725

2.2830
12 -2.2336

7
13 0.5400

2.3681
14 -2.3057

8
15 0.2636

2.2823
16 -2.2671

9
17 0.7200

2.1202
18 -1.9942

10
19 0.2390

1.8510
20 -1.8355

11
21 0.9450

0.9450
22 0

Table 3. Stress and Strain in Each Truss Element for -6kN Load

Element Stress (MPa) Strain

1 -12.750 -0.001417

2 11.250 0.001250

3 -2.1360 -0.0002373

4 -11.900 -0.001322

5 2.5000 0.0002778

6 -3.2040 -0.0003560

7 9.0000 0.001000

8 -8.9250 -0.0009917

9 3.2040 0.0003560

10 3.2040 0.0003560

11 6.7500 0.0007500

12 -8.9250 -0.0009917

13 -3.2040 -0.0003560

14 2.5000 0.0002778

15 9.0000 0.001000

16 -11.900 -0.001322

17 -2.1360 -0.0002373

18 11.250 0.001250

19 -12.750 -0.001417

Next, the reaction forces were calculated via MATLAB code. Reaction forces for the system will

only be present at nodes 1 and 11 since pinned joints exist at these nodes. Reaction forces are

zero at unsupported nodes even if an external force is applied to them due to the reaction being

internal. Still, the force outputs given by MATLAB at nodes 1 and 11 need to be modified to

account for the external -6kN vertical load that is ignored by the code due to inactive DOF (i.e.,

nodes 1 and 11 contain zero displacement). The forces output by MATLAB, in units of Newtons,

are shown in Table 4. The calculated reaction forces after accounting for the external vertical

load are also shown.

Table 4. Displacement Reaction Forces at Node 1 and Node 11

Node DOF MATLAB Force Output

(N)

Reaction Force (N)

1
1 -4.3688e-11 -4.3688e-11

2 15000 21000

11
21 0 0

22 15000 21000

Then, an ANSYS simulation of the roof truss was used to find the displacements and reaction

forces at each joint, as well as the stress in each truss element. The ANSYS results for X- and Y-

directional deformation, in units of centimeters, are shown in Figure 3. Additionally, the total

deformation values are shown in Figure 4. Figure 5 shows the stress, in units of megapascals, in

each truss element. Although graphical results are not shown for strain, given that ANSYS does

not have a solution function for this variable, it was calculated by hand and compared to

MATLAB results using the following equation:

𝜀 =
𝜎

𝐸
=

𝐷𝑖𝑟𝑒𝑐𝑡 𝑆𝑡𝑟𝑒𝑠𝑠 [𝑀𝑃𝑎]

9000 𝑀𝑃𝑎

Figure 3. X- and Y-Directional Deformation for -6kN Load

Figure 4. Total Deformation for -6kN Load

Figure 5. Stress in each Truss Element for -6kN Load

Lastly, reaction forces were computed at nodes 1 and 11 to compare with the reaction forces

computed by MATLAB and shown in Table 4. Figure 6 shows the forces computed using

ANSYS at both nodes. As the tables in the ANSYS results show, both methods produce similar

reaction forces. Namely, nodes 1 and 11 have a vertical reaction force of approximately 21kN.

Figure 6. Reaction Forces at Node 1 and Node 11 for -6kN Load

In order to compare the results given by MATLAB and ANSYS for displacements, stress and

strain, one internal truss element was chosen for comparison. Element 10 between nodes 6 and 7

was chosen. Table 5 lists results for both methods of computation along with percent differences.

Table 5. Comparison of MATLAB and ANSYS Results for Element 10

Computed Value MATLAB Result ANSYS Result Percent Difference

X-Direction Disp. at Node 6 0.4725 cm 0.52106 cm 9.77%

Y-Direction Disp. at Node 6 -2.2336 cm -2.2889 cm 2.45%

X-Direction Disp. at Node 7 0.5400 cm 0.62527 cm 14.6%

Y-Direction Disp. at Node 7 -2.3057 cm -2.2889 cm 0.731%

Total Disp. at Node 6 2.2830 cm 2.3505 cm 2.91%

Total Disp. at Node 7 2.3681 cm 2.3505 cm 0.746%

Stress at Element 10 3.2040 MPa 3.2301 MPa 0.811%

Strain at Element 10 0.0003560 0.0003589 0.811%

The last part of this problem involves using MATLAB code to find the maximum load capacity

for the truss. The current loading is -6kN as shown in Figure 1. We are given three design criteria

that must be satisfied for any proposed loading for a safety factor of 1.5. The maximum tensile

stress in any truss member cannot exceed the ultimate tensile strength divided by the safety

factor. The maximum compressive stress in any truss member cannot exceed the compressive

yield strength divided by the safety factor. Furthermore, the maximum deflection of roof truss

cannot exceed 3.75cm. These conditions are summarized in Table 6.

Table 6. Design Criteria for Finding Maximum Load Capacity of Truss

Maximum Tensile Stress 𝜎𝑚𝑎𝑥,𝑡𝑒𝑛𝑠𝑖𝑙𝑒 ≤ 64.333𝑀𝑃𝑎

Maximum Compressive Stress 𝜎𝑚𝑎𝑥,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 ≥ −24.667𝑀𝑃𝑎

Maximum Deflection 𝛿𝑚𝑎𝑥,𝑦 ≤ 3.75𝑐𝑚

A few modifications were made to the MATLAB code in order to compute the maximum load

capacity. Namely, a while loop was inserted to iteratively calculate all the stress and

displacement values of the truss and compare them with the design criteria values. A step was

incorporated to minimize the -6kN load until one of the design criteria was exceed, at which

point the code would break and MATLAB would generate the loading before then. An initial

loading and step value of -3kN and -100N were specified. Once a better estimate of the

maximum load capacity was obtained, the initial loading and step values were changed to -9kN

and -1N, respectively. See appendix for the detailed code. As a result, the maximum load

capacity given by MATLAB was found to be -9.758kN with deflection as the limiting criterion.

Similarly, a direct optimization simulation was created within ANSYS to minimize the loading

of -6kN while satisfying the design criteria shown in Table 6. The result of this optimization

code is shown in Figure 7. Since the loading is shared among the seven nodes along the top of

the truss, the maximum load capacity can be calculated as follows: -68811N/7 = -9830.1N.

Hence, the maximum load capacity given by ANSYS was found to be -9.830kN. This is a

difference of approximately 70N between the two methods of optimization, or a 0.737%

difference. Furthermore, the limiting criterion for both methods was found to be the deflection of

the truss. Figure 8 shows the y-deformation and direct stress for the optimized loading scenario.

Clearly, the truss reaches its maximum deflection of 3.75cm before exceeding the maximum

stress criteria.

How significant is the proposed increase in loading? It might not seem like a lot to increase from

-6kN to -9.830kN. Still, this is an increase of 26.8kN over the entire structure, which is

equivalent to the weight of two small vehicles. Although the maximum tensile and compressive

stresses are not exceeded by the proposed maximum load, additional analysis could be done on

buckling effects to enhance the solution. Perhaps the truss will fail due to buckling before

reaching its deflection limit.

Figure 7. Maximum Load Capacity per ANSYS Optimization

Figure 8. Y-Deformation and Direct Stress for Maximum Load Capacity

Appendix
%% MATLAB Codes for MAE 430 Project 1 Part II

% Code to calculate displacements and reaction forces at each joint, stress

% and strain in each truss; all functions called are found at the end of

script

clear all

clc

% E: modulus of elasticity [Pa]

% A: area of cross section [m^2]

% L: length of bar [m]

% EA: Axial force [N]

E=9e9; A=0.0025; EA=E*A;

% generation of coordinates and connectivities

numberElements=19;% number of elements

numberNodes=11; % number of nodes

elementNodes=[1 2;1 3;2 3;2 4;3 4;4 5;3 5;4 6;5 6;6 7;5 7;6 8;7 8; ...

 8 9;7 9;8 10;9 10;9 11;10 11];% Element connectivity: Each element has

% two nodes element 1 is composed of node 1 and 2; element 2 is composed

% of node 1 and 3, etc.

nodeCoordinates=[0 0;1.5 0.8;1.8 0;3 1.6;3.6 0; 4.5 2.4; ...

 5.4 0;6 1.6;7.2 0;7.5 0.8;9 0];

% x, y cooridnates for each node 1; here node 1 (0,0),

% node 2 (1.5,0.8), node 3 (1.8,0), etc.

xx=nodeCoordinates(:,1); % x-cooridnates for three nodes

yy=nodeCoordinates(:,2); % y-cooridnates for three nodes

% for structure we need to specify the following:

% displacements: displacement vector

% force : force vector

% stiffness: stiffness matrix

GDof=2*numberNodes; % GDof: total number of Global degrees of freedom

% since each node can move in the x- and y-direction

displacements=zeros(GDof,1);% displacement vectors with inital value of zero

force=zeros(GDof,1); % force vector with inital value of zero

% Loading condition

% Applied load at D.O.F 2,4,8,12,16,20,22 [N]

force([4 8 12 16 20],1)=-6000;

% computation of the global stiffness matrix for the truss system

stiffness=formStiffness2Dtruss(GDof,numberElements,...

elementNodes,numberNodes,nodeCoordinates,xx,yy,EA);

stiffness; % verify global stiffness matrix is symmetric by printing to

screen

% Call the function of formStiffness2Dtruss, the input varialbe is GDof,

% numberElements, elementNodes, numberNodes,nodeCoordinates, xx, yy, and EA

% boundary conditions and solution

prescribedDof=[1 2 22]';% prescribed B.C at D.O.F of 1,2, and 22

% solution

displacements=solution(GDof,prescribedDof,stiffness,force);% call solution

[stress, strain]=stresses2Dtruss(numberElements,elementNodes,...

xx,yy,displacements,E); % compute strain and stress in each truss

displacements % print displacements to screen

stress % print truss stresses to screen

strain % print truss strains to screen

reactionforces=outputDisplacementsReactions(displacements, ...

 stiffness,GDof,prescribedDof); % call function to compute reaction forces

% calculate total deflection at each node

for i=1:numberNodes

 totalDisplacement(i,1)=norm([displacements(2*i-1,1) displacements(2*i)]);

end

totalDisplacement % print total displament at each node to screen

reactionforces % print reaction forces to screen

% End code 1

%% Optimization of Truss

% Code to find the maximum load capacity given a safety factor of 1.5

% calls the same functions as code 1 above but incorporates a while loop

clear all

clc

% E: modulus of elasticity [Pa]

% A: area of cross section [m^2]

% L: length of bar [m]

% EA: Axial force [N]

E=9e9; A=0.0025; EA=E*A;

% generation of coordinates and connectivities

numberElements=19;% number of elements

numberNodes=11; % number of nodes

elementNodes=[1 2;1 3;2 3;2 4;3 4;4 5;3 5;4 6;5 6;6 7;5 7;6 8;7 8; ...

 8 9;7 9;8 10;9 10;9 11;10 11];% Element connectivity: Each element has

% two nodes element 1 is composed of node 1 and 2; element 2 is composed

% of node 1 and 3, etc.

nodeCoordinates=[0 0;1.5 0.8;1.8 0;3 1.6;3.6 0; 4.5 2.4; ...

 5.4 0;6 1.6;7.2 0;7.5 0.8;9 0];

% x, y cooridnates for each node 1; here node 1 (0,0),

% node 2 (1.5,0.8), node 3 (1.8,0), etc.

xx=nodeCoordinates(:,1); % x-cooridnates for three nodes

yy=nodeCoordinates(:,2); % y-cooridnates for three nodes

GDof=2*numberNodes; % GDof: total number of Global degrees of freedom

% since each node can move in the x- and y-direction

SF=1.5; % safety factor

UTS=96.5e6; % ultimate tensile strength [Pa]

CYS=37e6; % compressive yield strength [Pa]

maxTS=UTS/SF; % maximum tensile strength [Pa]

maxCS=CYS/SF; % maximum compressive strength [Pa]

% initiate while loop to find maximum load capacity

Loop=true;

load=-9000; % initializes the load

while Loop==true

 displacements=zeros(GDof,1);% displacement vectors with inital value of

zero

 force=zeros(GDof,1); % force vector with inital value of zero

 % Loading condition

 % Applied load at D.O.F 2,4,8,12,16,20,22 [N]

 force([4 8 12 16 20],1)=load;

 step=-1;

 % computation of the global stiffness matrix for the truss system

 stiffness=formStiffness2Dtruss(GDof,numberElements,...

 elementNodes,numberNodes,nodeCoordinates,xx,yy,EA);

 % boundary conditions and solution

 prescribedDof=[1 2 22]';% prescribed B.C at D.O.F of 1,2, and 22

 % solution

 displacements=solution(GDof,prescribedDof,stiffness,force);% call

solution

 % compute stress and strain in each truss

 [stress, strain]=stresses2Dtruss(numberElements,elementNodes,...

 xx,yy,displacements,E);

 % calculate total deflection at each node

 for i=1:numberNodes

 totalDisplacement(i,1)=norm([displacements(2*i-1,1)

displacements(2*i)]);

 end

 % set criteria to find maximum load capacity

 if max(stress)>maxTS % criteria 1

 fprintf('Maximum Tensile Stress Surpassed\n');

 load=load-step;

 break;

 end

 if abs(min(stress))>maxCS % criteria 2

 fprintf('Maximum Compressive Stress Surpassed\n');

 load=load-step;

 break;

 end

 if max(abs(displacements))>0.0375 % criteria 3

 fprintf('Maximum Deflection Surpassed\n');

 load=load-step;

 break;

 end

 load=load+step;

end

% End code 2

% END SCRIPTS FOR MAE 430 PROJECT 1 PART II

function [stiffness]=...

formStiffness2Dtruss(GDof,numberElements,...

elementNodes,numberNodes,nodeCoordinates,xx,yy,EA);

stiffness=zeros(GDof);

% computation of the system stiffness matrix

for i=1:numberElements

% elementDof: element degrees of freedom (Dof)

indice=elementNodes(i,:) ;

elementDof=[indice(1)*2-1 indice(1)*2 indice(2)*2-1 indice(2)*2] ;

xa=xx(indice(2))-xx(indice(1)); % x distance from start to end node of

element

ya=yy(indice(2))-yy(indice(1)); % y distance from start to end node of

element

length_element=sqrt(xa*xa+ya*ya); % calculate length of element "i"

C=xa/length_element; % cosine value for element "i"

S=ya/length_element; % sine value for element "i"

k1=EA/length_element*...

[C*C C*S -C*C -C*S; C*S S*S -C*S -S*S;

-C*C -C*S C*C C*S;-C*S -S*S C*S S*S]; % create 4x4 element matrix

stiffness(elementDof,elementDof)=stiffness(elementDof,elementDof)+k1;

% combine local element matrices to the global stiffness matrix

end

function [displacements]=solution(GDof,prescribedDof,stiffness,force)

% function to find solution in terms of global displacements

activeDof=setdiff([1:GDof],[prescribedDof]);

% the active D.O.F means that which D.O.F is free to move,

% in this case D.O.F 3-21 are free to move

U=stiffness(activeDof , activeDof)\force(activeDof);

displacements=zeros(GDof,1);

displacements(activeDof)=U; % assign your solved solution to your

displacements arrays

function [stress, strain]=stresses2Dtruss(numberElements,elementNodes,...

 xx,yy,displacements,E)

for i=1:numberElements

 indice=elementNodes(i,:);

 elementDof=[indice(1)*2-1 indice(1)*2 indice(2)*2-1 indice(2)*2] ;

 xa=xx(indice(2))-xx(indice(1));

 ya=yy(indice(2))-yy(indice(1));

 length_element=sqrt(xa*xa+ya*ya);

 C=xa/length_element;

 S=ya/length_element;

 stress(i)=(E./length_element)*[-C -S C S]*displacements(elementDof,1);

 strain(i)=stress(i)/E;

end

stress=stress';

strain=strain';

function [reactionforces] = outputDisplacementsReactions(displacements, ...

 stiffness,GDof,prescribedDof)

% function to find reaction forces at nodes where displacement is zero

activeDof=setdiff([1:GDof],[prescribedDof]);

% the active D.O.F means that which D.O.F is free to move,

% in this case D.O.F 3-21 are free to move

R=stiffness(prescribedDof,activeDof)*displacements(activeDof,1);

reactionforces=zeros(GDof,1);

reactionforces(prescribedDof)=R;

% compute a column vector of reaction forces

