MEMORANDUM

To: Dr. Stephen Terry
From: David Delgado, Travis Kiser, Brenden Resnick, and Trevor Vook
Date: April 21, 2020
Subject: MAE 412 Group 5 Project Heat Exchanger Final Report

The purpose of this report is to describe the solution that Group 5 has found for the textile dying operation wastewater management system, and our recommendations for the modifications to the system. This document will contain a brief summary of the steps and methods used to find the solution, followed by detailed analysis of the problem. Sample calculations and a copy of the Excel spreadsheet are included.

The most important findings of the report are presented below in a table format.

Item	Result $(1 / 4 "$ Tubes $)$	Result $\mathbf{(5 / 8 "}$ Tubes $)$	Result $(3 / 4 "$ Tubes $)$
Number of Tubes	232	204	195
HX Shell Diameter	$10 "$	$12^{\prime \prime}$	$14 "$
Temperature of Make-up Water leaving HX	$106.724^{\circ} \mathrm{F}$		
Initial Cost	$\$ 35,397$	$\$ 36,841$	$\$ 41,093$
Quarterly Maintenance Cost	$\$ 2,320$	$\$ 2,040$	$\$ 1,950$
Annual Natural Gas Cost Savings	$\$ 289,126$		
Salvage Value (in end-of-life dollars)	$\$ 15,983$	$\$ 16,635$	$\$ 18,555$
Net Annual Savings	$\$ 196,809$	$\$ 197,929$	$\$ 198,289$
Simple Payback Period	0.18 years	0.19 years	0.21 years
Project Net Present Value	$\$ 3,112,641$	$\$ 3,129,324$	$\$ 3,131,543$

The group recommends that the customer install the recovery heat exchanger using $5 / 8$ " diameter tubing; however, all options are very similar and all are acceptable choices for the customer to make based on their own circumstances. Group 5 is thankful for the opportunity to perform this work for you, and we hope that all results are to your satisfaction.

THERMAL SYSTEM DESIGN SOLUTION FOR WASTEWATER MANAGEMENT SYSTEM

Prepared for:
Dr. Stephen Terry
Research Assistant Professor

Prepared by:
David Delgado
Travis Kiser
Brenden Resnick
Trevor Vook
NC State University
Mechanical \& Aerospace Engineering Department
MAE 412 (001)

April 21, 2020

TABLE OF CONTENTS

Executive Summary ii
1.0 Introduction 1
2.0 Current Operations 2
2.1 Constraints 2
2.2 Assumptions 3
3.0 Objectives 4
4.0 Summary of Results 5
5.0 Recommendation 6
6.0 Appendices 7
6.1 Figures 7
6.2 Sample Calculations 9
6.3 Spreadsheets 36
6.4 Bibliography 45

Executive Summary

The purpose of this document is to outline an optimal solution for the reduction of the temperature of wastewater from a textile dyeing operation. The wastewater is pumped from an atmospheric pit at a temperature of $180^{\circ} \mathrm{F}$ to a sewer, also vented to atmosphere. City regulations require the wastewater to be cooled to a maximum temperature of $140^{\circ} \mathrm{F}$ or less. This report considers a heat exchanger with three possible alternatives for the size of the inner tubing: $1 / 4$ inch, $5 / 8$ inch, and $3 / 4$ inch.

The team recommends the customer install a single-pass heat exchanger with $5 / 8$ " tubing. This heat exchanger will have 204 tubes made of 304 stainless steel, with an outer diameter of 5/8" (0.625 ") and a wall thickness of 0.049 ". This heat exchanger will be fourteen feet long, with onefoot entry and exit plenums on each side, leaving a total tube length of twelve feet. The shell will be constructed of 12 -inch diameter insulated pipe.

It is estimated that this heat exchanger will have an overall cost of $\$ 36,841$; the tubes will cost $\$ 14,761$, the shell will cost $\$ 18,000$, and tube installation will cost $\$ 4,080$. The heat exchanger requires regular cleaning, estimated at a cost of $\$ 2,040$ a quarter. This heat exchanger will save the plant approximately $\$ 197,929$ every year for the planned 20 years of operation, and the project has a net present value of $\$ 3,129,324$.

This heat exchanger was chosen over the heat exchanger with $1 / 2$ tube size because it has a net present value that is approximately $\$ 17,000$ higher, for only an increase in initial cost of about $\$ 1,500$. It was chosen over the $3 / 4$ " tube size because the $3 / 4$ " tube heat exchanger has an initial cost that is approximately $\$ 4,000$ higher, and the net present value is only $\$ 2,000$ higher; additionally, due to the increased number of tubes found in the $5 / 8^{\prime \prime}$ tube heat exchanger, blockage or damage to a single tube will have a lesser effect on the overall cooling than it would with the $3 / 4$ " tube heat exchanger.

The wastewater is cooled by plant make-up water; the heating imparted on the make-up water reduces the amount of steam needed to heat it to the desired temperature of $140^{\circ} \mathrm{F}$ by approximately 5996.8 lb -mass per hour. The reduced operations of the boiler by this amount lead to natural gas cost savings of $\$ 289,126$ a year; however, the steam flows through a turbine before heating the make-up water, and the reduced rate of steam through the turbine results in reduced power generation. Purchasing enough electricity to make up for this lost production costs \$83,036.

The existing pump will continue to work without modification in the new system, thanks to an existing control valve in the line to the sewer. The control valve will be adjusted to ensure that flowrate remains constant through the heat exchanger. Due to the flowrate being kept constant, there will be no changes to the required pump work, and no changes to the electricity cost of running the pump. The pump, however, is not able to completely empty the wastewater pit for cleaning and maintenance; the team recommends shaving the pump impeller, installing a variable-frequency drive, or setting up a temporary sump pump for cleaning purposes, whichever is the most viable choice for the customer.

1.0 Introduction

The team has been tasked with evaluating process performance for a wastewater management and heat recovery system for a textile dyeing operation. 300 GPM of wastewater is pumped from an open storage pit at an average temperature of $180^{\circ} \mathrm{F}$ to an atmospheric vented sewer. The wastewater is not currently cooled as it goes to the sewer, but the city is now requiring the wastewater to be cooled to no more than $140^{\circ} \mathrm{F}$ before it reaches the sewer. The existing pump is a Goulds JC 3X4-11 slurry pump operating at 1750 RPM with an 8 " impeller.

It is proposed to install a heat exchanger bypass loop to cool the wastewater and recover heat for other plant processes by heating plant make-up water. The goal of this analysis is to evaluate the required heat exchanger specifications for the needed cooling, and the effect that such a heat exchanger would have on the overall system, including the pump and existing valves. The heat exchanger specifications will be analyzed for three given tubing sizes. The effect on the secondary make-up water heat exchanger, and cost reductions from those changes, will also be analyzed. The ability for the existing pump to empty the pit for cleaning purposes, and any NPSH issues that may arise from that, will also be evaluated.

2.0 Current Operations

2.1 Constraints

- Flow rate of wastewater: 300 GPM
- Inlet temperature of wastewater: $180^{\circ} \mathrm{F}$
- Desired outlet temperature of wastewater: $140^{\circ} \mathrm{F}$
- Make-up water recovery HX inlet temperature: $60^{\circ} \mathrm{F}$
- Make-up water secondary HX outlet temperature: $140^{\circ} \mathrm{F}$
- Maximum allowable length for recovery HX: 12 feet
- Maximum allowable tube-side velocity of recovery HX: $12 \mathrm{ft} / \mathrm{s}$
- Velocity of fluid through shell: $3 \mathrm{ft} / \mathrm{s}$
- Flowrate of steam from boiler: $125,000 \mathrm{lb} / \mathrm{hr}$
- Properties of steam leaving boiler: $700^{\circ} \mathrm{F}, 400 \mathrm{psig}$
- Turbine isentropic efficiency: 65\%
- Pressure of steam leaving turbine/entering secondary HX: 60 psig
- UA of secondary HX: $150,000 \mathrm{BTU} /\left(\mathrm{hr}^{\circ} \mathrm{F}\right)$
- Tube material: 304 Stainless Steel
- Steam leaves secondary HX as saturated liquid condensate at shell pressure
- Tube wall thicknesses: 0.049 inch ($1 / 2^{\prime \prime}$ and $5 / 8 "$ tubing), 0.062 " ($3 / 4$ " tubing)
- Cost of natural gas for boiler: $\$ 5 / \mathrm{MMBTU}$
- Boiler Efficiency: 83\%
- Pipe diameter (assumed inner diameter): 4 inches
- Goulds JC 3X4-11 slurry pump curve: See Figure A2 (page)
- Pump impeller diameter: 8 inches
- Pump speed: 1750 RPM
- Pit Surface Pressure: 0 psig
- Sewer Pressure: 0 psig
- Pipe Material: Commercial Steel
- Tubing Material: Drawn Metal
- \# tubes for $1 / 2$ " Pipe: 232 (see Report 1)
- \# tubes for $5 / 8$ " Pipe: 204 (see Report 1)
- \# tubes for $3 / 4$ " Pipe: 195 (see Report 1)
- Piping Length and Layout: See Figure A1 (page)

2.2 Assumptions

- Perfectly insulated system
- Pressure of make-up water: 100 psia
- Assume recovery HX is maximum allowable length (12ft)
- Evaluate most values (viscosity, $\mathrm{c}_{\mathrm{p}}, \operatorname{Pr}$) at average temperature in heat exchanger
- Make-up water in shell, wastewater in tubes (tubes easier to clean)
- Fouling factor of wastewater: $0.0002\left(\mathrm{~m}^{\wedge} 2^{*} \mathrm{~K}\right) / \mathrm{W}=4.0884\left(\mathrm{~s}^{*} \mathrm{ft}^{\wedge} 2^{*}{ }^{\circ} \mathrm{F}\right) / \mathrm{BTU}$
- Fouling factor of make-up water: $0.0001\left(\mathrm{~m}^{\wedge} 2 * \mathrm{~K}\right) / \mathrm{W}=2.0442\left(\mathrm{~s}^{*} \mathrm{ft}^{\wedge} 2^{*}{ }^{\circ} \mathrm{F}\right) / \mathrm{BTU}$
- Model heat exchanger as a cross-flow HX with mixed shell fluid
- No friction losses in heat exchanger plenums
- Entire wastewater system at constant atmospheric pressure
- All pipe/tube entrances/exits sharp-edged
- All elbows standard threaded elbows
- HX bypass piping installed in center of 200ft pipe section
- Pump installed in center of 10 ft pipe section

3.0 Objectives

The goal of this analysis is to find the following values and results:

- Number of recovery heat exchanger tubes required for each given tube size
- Overall diameter of recovery heat exchanger
- Temperature of make-up water leaving recovery heat exchanger
- Reduction in steam supplied to the secondary heat exchanger
- Effect of steam reduction on steam turbine, resulting fuel cost savings
- Required control valve K value for existing piping system to ensure 300GPM
- Required control valve K values for modified piping system for each given tube size
- Overall head loss of the system for each given tube size
- Change in required pump work for each given tube size
- Change in electricity cost for each given tube size
- Any possible NPSH issues that arise when attempting to pump out the wastewater storage pit for cleaning and maintenance
- Cost of recovery heat exchanger for each given tube size
- Simple payback period for each option
- Net present value of each option

4.0 Summary of Results

Item	Result $\mathbf{(1 / 4 "}$ Tubes)	Result $\mathbf{(5 / 8 "}$ Tubes $)$	Result $\left(\mathbf{3} 4^{\prime \prime}\right.$ Tubes)
Number of Tubes	232	204	195
HX Shell Diameter	$10 "$	$12 "$	$14^{\prime \prime}$
Temperature of Make-up Water leaving HX	$106.724^{\circ} \mathrm{F}$		
Initial Cost	$\$ 35,397$	$\$ 36,841$	$\$ 41,093$
Quarterly Maintenance Cost	$\$ 2,320$	$\$ 2,040$	$\$ 1,950$
Steam Usage Reduction (lbm/hr)	5996.8		
Annual Natural Gas Cost Savings	$\$ 289,126$		
Control Valve K value for existing system	46.469		
Control Valve K value for modified system	38.441	39.651	39.995
Overall head loss of system (ft)	65		
Pump Work Change (hp)	0		
Change in Electricity Cost	$\$ 0$		
Salvage Value (in end-of-life dollars)	$\$ 15,983$	$\$ 16,635$	$\$ 18,555$
Net Annual Savings	$\$ 196,809$	$\$ 197,929$	$\$ 198,289$
Simple Payback Period	0.18 years	0.19 years	0.21 years
Project Net Present Value	$\$ 3,112,641$	$\$ 3,129,324$	$\$ 3,131,543$

NPSH Considerations: The current pump operating conditions can only pump 7.45 feet of wastewater down from the pump's location. This leaves 2.55 feet of wastewater above the pipe inlet that cannot be pumped, as well as the two feet of wastewater that are below the pipe inlet and cannot be pumped by any pump in the current piping system. In order to pump the remaining 2.55 feet above the inlet while maintaining a flowrate of 300 GPM , either the pump speed must be reduced (which can be done by installing a variable-frequency drive), or the impeller diameter must be reduced by shaving the impeller. To pump out the last two feet, either additional piping must be installed, or a temporary sump pump or other small pump must be installed when it is time for cleaning and maintenance of the pit.

5.0 Recommendation

The group recommends the installation of a single pass heat exchanger with $2045 / 8^{\prime \prime} 304$ stainless steel tubes, contained within a 12 " diameter shell with internal baffles. The tubes have a wall thickness of 0.049 inches and the heat exchanger has a length of fourteen feet; one-foot plenums on either side result in a tube length of twelve feet. The $5 / 8^{\prime \prime}$ tube option has a net present value of $\$ 3.13$ million, compared to the $1 / 2^{\prime \prime}$ option, valued at $\$ 3.11$ million, when analyzed for a twenty-year operation lifetime. This higher net present value also comes with lower maintenance cost and only slightly higher initial cost $(\sim \$ 1,500)$. Since the NPV is most significantly impacted by the net yearly savings, and these savings are differentiated between the different tubing options only by cleaning costs, it is intuitive to pick the option with the lowest cleaning cost (i.e., $3 / 4^{\prime}$ ' tubing). However, the $5 / 8^{\prime}$ ' tubing option has the next lowest cleaning cost with an additional cost of only $\$ 360$ per year. The $5 / 8^{\prime \prime}$ tube was chosen over the $3 / 4$ " due to having an initial cost approximately $\$ 4,000$ lower.

Hence, accepting a slightly higher yearly cleaning cost via $5 / 8^{\prime \prime}$ tubing is recommended in order to significantly lower the upfront cost of the heat exchanger. Additionally, due to the increased number of tubes found in the $5 / 8 "$ tube heat exchanger, blockage or damage to a single tube will have a lesser effect on the overall cooling than it would with the $3 / 4$ " tube heat exchanger. The initial cost for our recommended project is $\$ 36,841$ and by choosing to move forward with this project it will bring a net present benefit of $\$ 3,129,324$ to the plant.

6.0 Appendices

6.1 Figures

Figure A1. Existing and Planned Piping System Sketch

Figure A2. Goulds JC 3X4-11 Pump Curve
[Group 5]
Sample Calculations MAE 412 (002)
Secondary Hex calculations
Givens: Steam flowrate: $125000 \mathrm{lbm} / \mathrm{hr}$
Initial steam pressure: 414.7 psia
Initial steam temperature $700^{\circ} \mathrm{F}$
Turbine Efficiency: 0.65
Turbine Exhaust Pressure: 74.7 psia
Secondary H_{x} UR: $\quad 150000 \frac{\mathrm{BtO}}{\mathrm{hr} r^{\circ} \mathrm{F}}$
Current MW Inlet Temp: $60^{\circ} \mathrm{F}$
Desired MW Outlet Temp: $140^{\circ} \mathrm{F}$
New mW Inlet: $\quad 106.724^{\circ} \mathrm{F}$
Mw pressure(assume): 100 psia
Mw Flowrate: $\quad 250 \mathrm{gpm}, 2005.208 \mathrm{ft} / \mathrm{hr}$
Density of MW From City: $62,38358 \mathrm{lbm} / \mathrm{ft}^{3}$
Mw Mass flowrate: $125092.07^{1 \mathrm{bm}} / \mathrm{hr}$
Steam Turbine Calculations

- Enthalpy of steam entering turbine: $=Q_{h}-p t(414.7,700)$
- Entropy of steam entering turbine: $h_{1}=1362.018$ Btu//n in isentropic turbine would remain = @S-pT $(414,7,700)$ the same. $S_{1}=S_{2}$

$$
S_{1}=1,636722 \frac{\mathrm{Btv}}{16^{\circ} \mathrm{C}}
$$

- Enthalpy of steam from perfect isentropic turbine.
 $\eta=0.65$

$$
\begin{gathered}
\eta=\frac{h_{1}-h_{2}}{h_{1}-h_{15}} \quad .65=\frac{1362.018-h_{2}}{1362.018-118.891} \\
h_{2}=1249.52 \frac{\text { Btu }}{16 \mathrm{~m}}
\end{gathered}
$$

Sample Calculations [Group 5] $\quad M_{A_{1}}=412(001)$
Thermal Systems Design Prgicct
We will begin this section by calculating unknowns in the current dyeing operation systems. Namely, we will tine the stem supplied to the secondary $H X$ in $\mid b / h e$. First, here is a schematic of the current system design:
current

$$
\begin{aligned}
& T_{w w_{i}}=180^{\circ} \mathrm{F} \rightarrow \square \cdot{ }^{r} T_{w w_{0}}=180^{\circ} \mathrm{F} \cdots ; \text { sewer } \\
& 14.7 \mathrm{ps} \\
& Q_{W W}=300 \mathrm{gpm} \\
& \text { * Mw assumed pressure } \\
& \text { of loopsim }
\end{aligned}
$$

Where properties are evaluated using x Steam Tables (English Units):

$$
\begin{aligned}
& T_{T E_{0}}=307.32 \% \quad \quad h E_{E_{0}}=277.3 \frac{\mathrm{Btu}}{1 \mathrm{~L}} C_{P, m w} \text { © } \bar{T}_{m w}=1000 \mathrm{~F}=0.917702 \mathrm{Bt}= \\
& h_{2}=h_{1}-\eta\left(h_{1}-h_{2 s}\right) \\
& P_{\text {MW, } 60 \%}=62.384 \quad 1 \mathrm{~b} / \mathrm{ft} 3 \\
& \text { MW - makeup water } \\
& \text { WW - wastewater } \\
& \text { TE - turbine exhnus't }
\end{aligned}
$$

(no reed ti evaluate at higher temp. since no velocity limits exist)
Now we can solve for \dot{n} TE, stem supplied to secondary $H X$ in $16 / \mathrm{hr}$. Recall Q, volumetric flow rate, can also be written as \dot{V} :

$$
\begin{align*}
Q=\dot{V} \Rightarrow p & =\frac{m}{V}=\frac{\dot{m}}{\dot{V}}=\frac{\dot{m}}{Q} \\
\therefore \quad \dot{m} & =P_{M w, 160^{\circ} \mathrm{F}} Q_{m W} \tag{1}\\
& =\left(62.384 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)(250 \mathrm{gpm})\left(\frac{60 \cdot \mathrm{~min}}{\mathrm{he}}\right)\left(\frac{0.133681 \mathrm{ft}^{3}}{1 g_{a 11}}\right) \\
\dot{m}_{M W} & =125093 \mathrm{lb} / \mathrm{hr}
\end{align*}
$$

Next, use to twi heat transfer re b relations to find $\dot{M} T E$:

$$
\begin{align*}
q & =\dot{m}_{m w} C_{p, m w}\left(T_{m w}-T_{m w i}\right) \tag{2}\\
& =(125093 \mathrm{lb} / \mathrm{hr})\left(0.997702 \frac{\text { Btw }}{16^{\circ} \%}\right)(140-60)^{\circ}= \\
& =9.9844 \times 10^{6} \frac{\text { Btw }}{\mathrm{hr}}
\end{align*}
$$

lastly, use a total hent truster rate relation for thad undergoing /lase change:

$$
\begin{equation*}
q=\dot{m}_{T E}\left(h_{2}-h_{T E_{V}}\right) \tag{3}
\end{equation*}
$$

Sample Calculations [Group 5] MAE 412 (001)
where $\eta=0.65, h_{1}=1362.02 \mathrm{Btw} / 1 \mathrm{~b}, h_{25}=1188.95 \frac{\mathrm{Btw}}{16}$; hence $h_{2}=1249.52 \frac{\mathrm{Btn}}{\mathrm{Bt}}$

$$
\left.\begin{array}{rl}
\therefore \dot{m}_{T E}= & 9.9844 \times 10^{6} \frac{\text { Btu }}{h r} \\
& (1249.52-277.3) \frac{\text { Btw }}{16}
\end{array} \rightarrow T_{T E_{i}}=435.37^{\circ} \mathrm{F}\right)
$$

Now, we will look at the desired system consisting of a recovery heat exchanger and the secondary heat exchanger as shown below:

Desired

$$
T w \omega_{i}=180^{\circ}=
$$

$$
Q_{w w}=300 \mathrm{gpm}
$$

$$
T E_{0}
$$

Goosing,

Sat. liquid

Recovery HX wW tubing: $U_{w w, \text { max }}=12 \mathrm{fflec}$

$T_{m w_{i}}=60^{\circ} \mathrm{F}, \varphi_{\text {mw }}=250$ gpo $\quad D i=D 0-2 t$
$T_{m w_{02}}=140^{\circ} \mathrm{F} \quad u_{m w}=3 \mathrm{ft} / \mathrm{sec}$ (external flow)
 steam (superheated steam) (other processes)
where properties are evaluated using x Steam Tables (English units):

$$
\begin{array}{ll}
\overline{T_{m W}}=\frac{100^{\prime}+60 \text { suss }}{2}=80^{\circ} \mathrm{F}
\end{array} \quad \overline{T_{W W}}=\frac{180+140}{2}=160^{\circ} \mathrm{F} .
$$

First, use eqn (1) to calculate mass flow rates for make-up water ass wastewater through the recovery $H X$:

$$
\begin{aligned}
\dot{n}_{w w} & =\rho_{w w_{1} 160^{\circ} \mathrm{F}} Q_{w W} \\
& =\left(60.580 \frac{16}{\mathrm{ft}^{3}}\right)(300 \mathrm{gpm})\left(\frac{60 \mathrm{~min}}{\mathrm{hr}}\right)\left(\frac{0.133681 \mathrm{ft}^{3}}{g a 110 \mathrm{on}}\right) \\
& =14577 \frac{15}{\mathrm{hr}} \quad T_{m w_{0}}=?
\end{aligned}
$$

Sample Calculations [Grump 5]
Similarly, for nnw:

$$
\begin{aligned}
\dot{m}_{m w} & =P_{m w} 60^{\circ} \mathrm{F} Q_{m w}=\left(62.384 \frac{\mathrm{Bb}}{\mathrm{ft}^{3}}\right)(250 \mathrm{gpm})\left(\frac{60 \mathrm{~min}}{\mathrm{hr}}\right)\left(\frac{0.133681 \mathrm{ft}^{3}}{391 \mathrm{len}}\right) \\
& =125093 \frac{\mathrm{lb}}{\mathrm{hr}}
\end{aligned}
$$

Use equation (3) to fird total heat transfer rate:

$$
\begin{aligned}
q & =\dot{m}_{w w} C_{p, w w @ T_{w v}}\left(T_{w w i}-T_{w w o}\right) \\
& =\left(145771 \frac{\mathrm{H}}{h_{r}}\right)\left(1.0005 \frac{\text { Btu }}{1 b^{\circ} \mathrm{F}}\right)(180-140) 0 \mathrm{~F} \\
& =5833755 \frac{\text { Btu }}{\mathrm{hr}}
\end{aligned}
$$

set the result of the preving equivalent to the heat pronster provided by the makeup water, and solve for $T_{\text {moo }}$:

$$
\begin{aligned}
q & =\dot{m}_{m w} C_{p_{1} m w} @ T_{m w}\left(T_{m w}-T_{m w_{i}}\right) \\
T_{m w_{0}} & =T_{m w i}+\frac{q}{m_{m w} C_{p_{1}, m w e} T_{m w}} \\
& =60^{\circ} \mathrm{F}+\frac{58337550 t w / \mathrm{hr}}{\left(125093 \frac{\mathrm{lb}}{\mathrm{hi}}\right)\left(0.99826 \frac{8 \mathrm{tw}}{16^{\circ} \mathrm{F}}\right)} \\
T_{m w 0} & =106.72^{\circ} \mathrm{F}
\end{aligned}
$$

The accuracy of the previous answer can be improved by evaluating properties at the new Tow and solving for Two in the some way as such:

$$
T_{\text {Mw }}=\frac{106.72 T 60}{2}=83.360 \mathrm{~F} \Rightarrow C_{\text {pimwe }} T_{\text {mw }}=0.998104 \frac{\mathrm{Btw}}{16^{\circ} \mathrm{F}}
$$

Hence, $T_{\text {mao }}$ un be reevaluated:

$$
\begin{aligned}
T_{\text {Mw }} & =T_{M w_{i}}+\frac{q}{\dot{m}_{\text {mw }} C_{\text {P,MwETMW }}} \\
& =60^{\circ} \mathrm{F}+\frac{583375 \mathrm{~s} \mathrm{Btw} / \mathrm{hr}}{\left(125093 \frac{\mathrm{hb}}{\mathrm{hr}}\right)\left(0.998104 \cdot \frac{B t^{w}}{1 b^{\circ} \mathrm{F}}\right)} \\
T_{\text {Mw }} & =106.72^{0} \mathrm{~F}
\end{aligned}
$$

(ANSWER 3)

Now that all temperatures in the diagram are known, it is possible to begin an analysis of the recovery HX's overall heat transfer coefficient. we begin by calculating the internal heat temsfer coefficient between the wastewater and the tubes $\left(h_{i}\right)$. Note that these calculations are for tubes with $D_{0}=0.5$ ", but the sore steps cm be followed for other tube sizes:
h_{i} :

$$
\begin{equation*}
Q_{w w}=u_{w w} A_{i \cdot N} \tag{4}
\end{equation*}
$$

where $u_{\text {mas, max }}=12 \mathrm{ft} / \mathrm{sec}=43200 \mathrm{ft} / \mathrm{h} /$,

Sample Calculations [Group 5] MAE 412 (002)
Thermal Systems Design Project

$$
A_{i}=\frac{\pi}{4} D_{i}^{2}=\frac{\pi}{4}\left(\frac{0.402}{12} \mathrm{ft}\right)^{2}=0.00088141 \mathrm{ft}^{2} \text {, and } Q_{w w}=300 \mathrm{gpm}=2406.26 \frac{\mathrm{ft}^{3}}{\mathrm{hr}} \text {. }
$$

We can make an initial guess for the optimal number of tubes given the desired design requirements:

$$
N=100 \text { tubes } \Rightarrow u_{\omega \omega}=\frac{2406.26^{\mathrm{ft} / \mathrm{hr}}}{\left(0.000881+1 \mathrm{ft}^{2}\right)(100)}=27300 \mathrm{ft} / \mathrm{hr}
$$

Calculate the Reynold's number for the interanal wastewater flow through tubes:

$$
\left.\operatorname{ReD}_{D}=\frac{\left(\rho_{\omega N}, 180^{\circ} \mathrm{F}\right)\left(u_{\omega \omega}\right)\left(D_{i}\right)}{\mu_{\omega N E T W N}}=\frac{\left(60.580 \mathrm{16} / \mathrm{ft}^{3}\right)(27300 \mathrm{ft} / \mathrm{hr})(0.402}{12} \mathrm{ft}\right)(5)
$$

$$
R_{2 D}=57569 \quad\left(R_{e D}>10,000 \therefore\right. \text { use Dittus-Boelter equation) }
$$

Use Dittos - Boelter Equation to Calculate the local Nusselt number:

$$
\begin{align*}
N_{u_{D}} & =0.023 R_{e}{ }^{4 / 5} \operatorname{Pr}_{\text {NweTww }}^{n} \text { where } T_{n}>T_{s}(\text { coding }) \therefore n=0.3 \tag{6}\\
& =0.023(57569)^{4 / 5}(2.5230)^{0.3} \\
N_{u_{D}} & =195.19
\end{align*}
$$

Use the relationship below to solve for hi:

Next, calculate the external heat traitor coefficient between the make-up water and the tubes assuming one tube in isolation inther than a bank of tubes. Properties of the makeup water are shown below:
h_{0};

Find the Reynolds number for external flow over the sirmar cylinder:

$$
\begin{aligned}
& R_{C_{D}}=\frac{\left(P_{M W}, 106,72^{\circ} F\right)\left(V_{n w}\right)\left(D_{0}\right)}{M \text { Mw } \subset T_{M w}} \\
& =\frac{\left(61.922 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)(3 \mathrm{ft} / \mathrm{sec})\left(\frac{3600 \mathrm{sec}}{\mathrm{hr}}\right)\left(\frac{0.5}{12} \mathrm{ft}\right)}{1.990397 \frac{\mathrm{lb}}{\mathrm{ft}-\mathrm{hr}}} \\
& R_{C_{D}}=14000 \text { (turbulent since } R_{f_{P}}>230 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \overline{T_{m w}}=83.36^{\circ} \mathrm{F} \\
& K_{m w}, \overline{T_{m a l}}=0.35428 \quad \frac{B+u}{\text { heft } \%} \\
& P_{\text {MW, } 106.72^{\circ} \mathrm{F}}=61.922 \frac{\mathrm{lb}}{\mathrm{ft}^{3}} \quad \quad \text { Cp,mwe Q Tm }=0.998104 \quad \frac{\text { Btu }}{1 \mathrm{~b}^{\circ} \mathrm{F}} \\
& \mu_{\text {MW © Tow }}=1.990397 \frac{\mathrm{Ib}}{\mathrm{ft}-\mathrm{hr}} \\
& \operatorname{Pr}_{\text {MWCO }} T_{\text {MN }}=5.6075
\end{aligned}
$$

$$
\begin{align*}
& N_{u_{0}}=\frac{h_{i} D_{i}}{k_{\text {mme } T_{w \omega}}} \tag{7}\\
& h_{i}=\frac{N_{w D} K_{w w} \overline{e T w w}_{T_{w}}}{D_{i}}=\frac{(195.19)\left(0.381 .28 \frac{\text { Btw }}{h_{r-f+0}}\right)}{(0.402 / 12 \mathrm{ft})} \\
& h_{i}=2223.6 \quad \frac{B+\omega}{h r-f t^{2}} \cdot \mathrm{~F}
\end{align*}
$$

calculate the average Nusset number using equation 7.52 in the textbook:

$$
\begin{aligned}
& N_{u_{0}}=\frac{\bar{h} D_{0}}{k_{M m, T m W}}=C R_{C D}^{m} \operatorname{Pr} \overline{T M}_{\text {moe }}^{1 / 3} \text { where } P_{r}>0.7 \text { is satisfied } \\
& \text { and from table } 7.2 \text { for } R_{e_{0}}=14000 \\
& N_{u_{0}}=0.193(14000)^{0.618}(5.6075)^{1 / 3} \\
& =125.15
\end{aligned}
$$

Therefore, h. can be calcuinted as follows:

$$
\begin{aligned}
h_{0} & =\frac{K_{m M} F_{m \omega}^{m}}{D_{0}} N_{r_{0}}=\frac{0.35428 \frac{B t_{n}}{h t^{\circ}}}{(0.5 / 12 \mathrm{ft})}(125.15) \\
& =1064.2 \frac{\text { Btun}}{h_{1} \mathrm{ft}^{2} 0_{1}=}
\end{aligned}
$$

Now, the overall heat transfer coeffient for a single tube an be found using the following:
[Ur]: $\frac{1}{U_{0} A_{0}}=\frac{1}{h_{i} A_{i}}+\frac{R f_{10}^{\prime \prime}}{A_{0}}+\frac{\ln \left(D_{0} / D_{i}\right)}{2 \pi K_{304} L}+\frac{R f_{1 i}^{\prime \prime}}{A_{i}}+\frac{1}{h_{0} A_{0}}$
where n_{304} is evaluated at $300 \mathrm{~K}(\sim 80 \circ \mathrm{~F}) \Rightarrow 12_{304}=14.9 \frac{\mathrm{mh}}{\mathrm{m}}=8.6091 \frac{\text { Btu }}{\mathrm{hrft}} \mathrm{f}{ }^{\circ} \mathrm{F}$

$$
\begin{aligned}
& \frac{1}{U_{0}}=\frac{0.5}{(0.402)\left(2223.6 \frac{B t u}{h r-f t^{2}-0 F}\right)}+0.00056783 \frac{h r \mathrm{ft}^{2} \mathrm{O}_{1}=}{\beta+\omega}+\frac{(0.5 / 12 \mathrm{ft}) \ln \left(\frac{0.5}{0.402}\right)}{2\left(8.6091 \frac{\beta+\mathrm{B}^{2}}{\mathrm{het+2} \mathrm{\%}}\right)} \\
& +\frac{(0.5)\left(0.0011357 \frac{h r f t^{2} \%}{B t u}\right)}{0.402}+\frac{1}{1064.2 \frac{B+u}{h r f t=3 F}} \\
& =0.0040073 \frac{\mathrm{hrft}}{\mathrm{Btw}} \mathrm{~F} \\
& U_{0}=249.54 \frac{\text { Btu }}{\mathrm{hrft}^{2} \mathrm{~F}}
\end{aligned}
$$

Utilize E-NTU and LMTD methods to evaluate the UA of the recovery HX assuming cross flow $H X$ with wastewater flow unixed and makeup water fou mixed. These relations will find UA for the entire bun of tubes, and we will solve for N to see if the computed value converges with our initial guess there of:

$$
\begin{aligned}
& N T U=\frac{U A}{C_{m i n}} \\
& U_{0} A_{0}=C_{\min } N T U \\
& U_{0}\left(\pi D_{0} L N\right)=C_{\min } N T U \\
& N=\frac{C_{\min } N T U}{U_{0} \pi D \quad L} \quad \text { where } L=12 \mathrm{ft}
\end{aligned}
$$

Find $C_{\text {min }}$ using the following relations:

$$
\begin{align*}
& C_{m w}=\dot{m}_{\text {mw }} C_{P, m w e} \bar{T}_{\text {mw }}=\left(125093 \frac{\mathrm{lb}}{\overline{\mathrm{hr}}}\right)\left(0.998104 \frac{\mathrm{Btu}}{\mathrm{lb} \mathrm{~b}^{\circ} \mathrm{F}}\right)=124856 \frac{\mathrm{Btu}}{\mathrm{hr}{ }^{\circ} \mathrm{F}} \\
& C_{w w}=\dot{m}_{w w} C_{p, w w e} \overline{T_{w w}}=\left(145771 \frac{\mathrm{lb}}{\mathrm{hr}}\right)\left(1.0005 \frac{\mathrm{Btu}}{16^{\circ} \mathrm{F}}\right)=145844 \frac{\mathrm{Btu}}{\mathrm{hr}^{\circ} \mathrm{F}} \\
& \therefore C_{\text {min }}=C_{\text {mw }}=124 \text { Typeyourtext } C_{\text {max }}=C_{w w}=145844 \frac{\mathrm{Btu}}{\mathrm{hr} r^{\circ} \mathrm{F}} \\
& C_{r}=C_{\text {min }}=0.85609 \tag{12}
\end{align*}
$$

Use ε-NTU relation in table 11.4 for cross -flew (sigh pass) $H X$ with $C_{\text {min }}$ (mixed), $C_{\text {max }}$ unmixed)

$$
\begin{equation*}
N T U=-\left(\frac{1}{c_{r}}\right) \ln \left[c_{r} \ln (1-\varepsilon)+1\right] \tag{13}
\end{equation*}
$$

Where ε is found using the following relation:

$$
\begin{aligned}
\varepsilon & =\frac{q}{q_{\text {max }}}=\frac{C_{w w}\left(T_{w w i}-T_{w w_{0}}\right)}{c_{\min }\left(T_{w w i}-T_{m w i}\right)} \\
& =\frac{\left(145844 \frac{\text { Btu }}{\text { hr }}\right)(180-140)^{\circ} \mathrm{F}}{\left(124856 \frac{\text { Btu }}{\text { hr } \cdot F}\right)(180-60)^{\circ} \mathrm{F}}=0.389366
\end{aligned}
$$

Hence, NTU con be evaluated:

$$
\begin{aligned}
& \text { NTU }=-\left(\frac{1}{0.85609}\right) \ln [0.85609 \ln (1-0.389366)+1] \\
& N T U=0.64088
\end{aligned}
$$

Finally, N can be computed using equation (II):

$$
N=\frac{\left(124856 \frac{\text { Btu }}{\text { he. F }}\right)(0.64088)}{\left(249.54 \frac{\text { Btu }}{\text { heft. }} \mathrm{F}\right)(\pi)\left(\frac{0.5}{12} \mathrm{ft}\right)(12 \mathrm{ft})}=204.14
$$

We would round $n p$ the exact value of N to the next whole number, since a fraction of a tube can not be placed in the $H X$:

$$
N=205 \text { tubes } \quad\left(N_{\text {initial gers }}=100 \text { tubes }\right)
$$

Based on the discrepancy between the initial and computed values of N, the value guessed for N is not optimal, we can iterate the calculations above with a new N value until the initial and computed values converge, starting with $N=205$. We will find that $N=232$ is the optimal number of tubes required via the E-NTU method. We can confirm this via the LMTD method:

$$
N=232 \Rightarrow u_{w w}=\frac{2406.26 \mathrm{ft}^{3} / \mathrm{hr}}{\left(0.00088141 \mathrm{ft}^{2}\right)(232)}=11767 \mathrm{ft} / \mathrm{hr}
$$

From equations $(5),(6),(7)$:

$$
h_{i}: R_{C D}=\frac{\left(60.580 \mathrm{lb} / \mathrm{ft}^{3}\right)(11767 \mathrm{ft} / \mathrm{hr})\left(\frac{0.402}{12} f t\right)}{0.962382 \mathrm{lb} / \mathrm{ft}-\mathrm{hr}}=24814
$$

$$
\begin{aligned}
N_{u_{D}} & =0.023(24814)^{4 / 5}(2.5230)^{0.3} \\
& =99.554 \\
h_{i} & =\frac{\left(0.381628 \frac{\text { Btu }}{\mathrm{hr-t+0})}\right.}{(0.402 / 12 \mathrm{ft})}(99.554)=1134.1 \mathrm{hr} \frac{\mathrm{ft}}{}{ }^{20}=
\end{aligned}
$$

The external heat truster coefficient between the make-up water ant the tubes, ho, remains constant since the ralee-up water properties and $3 \mathrm{ft} / \mathrm{sec}$ fluid velocity requirement across the tubes are not affected by the number of tubes, N.

 Flow $H X$ with wastewater flow unmixed and malee-up water flow mixed. Find UA for the entire bank of tubes:

$$
\begin{aligned}
q & =F U_{0} A_{0} \Delta T_{\text {In }} \\
& =F U_{0}\left(\pi D_{0} L N\right) \Delta T_{\text {lm }} \\
N & =\frac{C_{\omega \omega}\left(T_{w \omega i}-T_{\omega \omega_{0}}\right)}{F U_{0} \pi D_{0} L \Delta T_{\text {in }}} \quad \text { where } L=12 \mathrm{ft}
\end{aligned}
$$

Find the log mean temperature difference, $\Delta T_{1 m}$, in the recovery $\neq 1 x$:

$$
\begin{array}{rlrl}
\Delta T_{1 m}= & \frac{\Delta T_{1}-\Delta T_{2}}{\ln \left(\Delta T_{1} / \Delta T_{2}\right)} & \text { where } \Delta T_{1}=T_{w w_{0}}-T_{m w_{i}}=80^{\circ} \mathrm{F} \\
= & \Delta T_{2}=T_{w w_{i}}-T_{m w_{0}}=73.28^{\circ} \mathrm{F} \\
& \ln (80-73.28)^{\circ} \mathrm{F} \\
& & & \\
\Delta T_{\text {lm }}= & 76.591^{\circ} \mathrm{F}
\end{array}
$$

Next find the correction factor, F, using figwe 115.4 in the supplemental textbook material:

$$
R=\frac{T_{i}-T_{0}}{t_{0}-t_{i}} \text { where "t"assiged to tube-side flail (ww) temp (17) }
$$

Simple Calculation [Group 5] MAE $412(001)$

$$
\begin{aligned}
& R=\frac{60-106.72}{140-180}=1.168 \\
& P=\frac{t_{0}-t_{i}}{T_{i}-t_{i}} \\
& P=\frac{140-180}{60-180}=0.33333
\end{aligned}
$$

$\therefore F=0.95$ (interpolated from figure 115.4)
Hence, N con be culculated from equation (15):

$$
\begin{aligned}
N= & \left(145844 \frac{\text { Btu }}{\text { hr. }}\right)(180-140)^{\circ}= \\
& (0.95)\left(220.04 \frac{\text { Btu }}{\mathrm{hrft}^{20} \mathrm{~F}}\right)(\pi)\left(\frac{0.5}{12} \mathrm{ft}\right)(12 \mathrm{ft})\left(76.591^{\circ} \mathrm{F}\right) \\
N= & 231.97 \Rightarrow 232 \text { tubes (for } \frac{1}{2}^{\prime \prime} \text { tube) (ANSWER 1) }
\end{aligned}
$$

After rounding up the exact value of the calculated number of tubes, we find that $N=232$. This confirms that 232 is the optimal number of tubes required since it matches the initial guess. Hance, the E-NTU as CMTD methods give the same result in this case. An important thing to note is that there is a simpler equivalent form of the solution to the number of rubes for both methods, which facilitate Excel calculations. For E-NTU method, we begin with equation (II):

$$
\begin{aligned}
& \left(U_{0} A_{0}\right)_{\text {overaLl }}=C_{\min } N T U \\
& \left(U_{0} A_{0}\right)_{\text {single tube }}=U_{0} \pi D_{0} L
\end{aligned}
$$

The solution for N was sriginalley written as follows:

$$
N=\frac{C_{\min } N T U}{v_{0} \pi D_{0} L}
$$

We may rewrit it as:

$$
\begin{equation*}
N=\frac{\left(U_{0} A_{0}\right)_{\text {overall }}}{\left(U_{0} A_{0}\right)_{\text {single tube }}} \tag{19}
\end{equation*}
$$

similarly, for LMTD rethal we begin with equation (15):

$$
\begin{aligned}
& \left(U \circ A_{0}\right)_{\text {overall }}=\frac{q}{F \Delta T_{\text {In }}} \\
& \left(U_{0} A_{0}\right)_{\text {single tube }}=U_{0} \pi D_{0} L \quad \text { where } N=\frac{q}{F U_{0} \pi D_{0} L \Delta T_{\text {in }}} \\
\therefore & N=\left(U_{0} A_{0}\right) \text { overate } \\
& \left(U 0 A_{0}\right) \text { single tube }
\end{aligned}
$$

[Group 5]
Sample calculations MAE $412(002)$
Tube Packing and Shell Size Calculations

- We choose the most efficient, equilateral, packing of our tubes.
- Tubes must have $\frac{1}{4} D$ space between them.

-The triangle contains 3,1/6 pieces.
- Each triangle contains $\frac{1}{2}$ of a pipe.
- Each triangle side is $\frac{5}{4} \mathrm{D}$ long.
$\frac{1}{6}$ Piece
Area calculations for $\frac{1}{2}^{\prime \prime}$ tube:
Side length: $L=\frac{5}{4}\left(\frac{1^{\prime \prime}}{2}\right)=\frac{5^{\prime \prime}}{8}=0.625^{\prime \prime}$
Triangle height: $h=0.625 \sin \left(60^{\circ}\right)=0.5413^{11}$
Triangle Area: $A=\frac{1}{2} b h=\frac{1}{2}\left(.625^{\prime \prime}\right)\left(0.5413^{\prime \prime}\right)=0.1691 \mathrm{in}^{2}$
Total Area: (for 232 needed tubes)

$$
2 \cdot A \cdot N_{\text {tubes }}=0.1691 \mathrm{in}^{2} \cdot 232 \cdot 2=78.48 \mathrm{in}^{2}
$$

Required shell ID:

$$
\begin{aligned}
A=\frac{\pi D^{2}}{4} \quad D & =\sqrt{\frac{4 A}{\pi}}=\sqrt{\frac{4 \cdot 78.48 \mathrm{in}^{2}}{\pi}} \\
D & =9.9962 \mathrm{in} \quad \text { (ANSWER 2) }
\end{aligned}
$$

Round up to a $10^{\prime \prime}$ pipe.

Sample Calculations [Group 5]
We can solve for the new steam supplied to the secindry HD in $\mathrm{lb} / \mathrm{hr}$, M iE, as a result of increasing the temperature of the makeup water entering the secondary $H X$. Properties are evaluated using x steam Tables (English Units):

$$
\bar{T}_{M W}=\frac{106.72+140}{2}=123.36^{\circ} \mathrm{F} \quad P_{M w} / 60^{\circ} \mathrm{F}=62.384 \quad 16 / \mathrm{ft}^{3}
$$

$$
C_{\text {PIMw@TMW }}=0.997986 \frac{\text { Btw }}{16^{\circ} \mathrm{F}}
$$

(flow rate going in to recovery HX is the same going in to secondary HX)
Recall, the muss flow rate of the make-up water con be found using qqation (1)

$$
\begin{aligned}
& \dot{m}_{\mathrm{mW}}=p_{m W / G 0 \cdot F} \theta_{\mathrm{mW}}=\left(62.384 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)(250 \mathrm{glm})\left(\frac{60 \mathrm{~min}}{\mathrm{hr}}\right)\left(0.133681 \mathrm{ft}^{3}\right. \\
& \dot{m}_{M W}=125093 \mathrm{ll} / \mathrm{hr}
\end{aligned}
$$

Use equation (2) to Find the toto hent transfer rate:

$$
\begin{aligned}
q & =\dot{m}_{M W} C_{P_{1 M W}} Q_{\text {TM w }}\left(T_{M \omega} O_{L}-T_{m \omega \delta}\right) \\
& =\left(125093 \frac{16}{h_{r}}\right)\left(0.997986 \frac{\text { Btw }}{1 b^{\circ} \mathrm{F}}\right)(140-106.72)^{\circ} \mathrm{F} \\
q & =4154722 \frac{\text { Btw }}{\mathrm{hr}_{r}}
\end{aligned}
$$

Use equation (3) to calculate the to tall heat transfer rate for steam undergoing Phase change:

$$
\begin{aligned}
& q=\dot{m}_{T E}\left(h_{2}-h_{T E_{0}}\right) \\
& \dot{m}_{T E}=\frac{q}{h_{2}-h T E}=(1249.52-277.3) \frac{\mathrm{Btu}}{16} \\
& \dot{m}_{T E}=427722 \frac{\mathrm{Btu}}{\mathrm{hr}}
\end{aligned}
$$

Note, the stem that heats the make-up water in the se condor $H X$ has the save properties as those in the current design. Namely, $T_{1 E_{0}}=307.32^{\circ} \mathrm{F}$ and $T_{T E_{i}}=435.37^{\circ} \mathrm{F}$. Hence, the reduction in Steam supplied to the secondary $H x$ lan be found:

$$
\begin{aligned}
& \Delta \dot{M}_{T E}=\left(\dot{M}_{T E}\right)_{\text {current }}-\left(\dot{n}_{T E}\right)_{\text {desired }} \\
&=10270-4273.4 \frac{16}{h_{r}} \\
& \Delta \dot{M}_{T E}=5996.6 \frac{16}{h r} \\
& \text { (ANSWER 4) }
\end{aligned}
$$

Sample Calculations MAE $412(002)$
Thermal Systems Design Project

- Steam Cost Savings
η boiler $=83 \%$ Gas cost of Boiler. $.000005 \$ /$ Bt
- Assume boiler feed water is at 14.7 psia $60^{\circ} \mathrm{F}$

$$
h_{f w}=28.11959 \frac{\mathrm{Bto}}{1 \mathrm{bm}}
$$

- Enthalpy of steam leaving boiler at $700^{\circ} \mathrm{F}, 414.7$ psia

$$
h_{\text {steam }}=1362.0177 \frac{\mathrm{Bto}}{1 \mathrm{bm}}
$$

heat saved:

$$
\begin{align*}
& Q=\dot{m}_{\text {steam }}(\Delta h \tag{21}\\
& Q=5996.7734 \frac{\mathrm{lbm}}{\mathrm{hr} \text { boikr }}\left(1362.0177 \frac{\mathrm{Btv}}{\mathrm{hbm}}-28.11959\right) \\
& Q=7999084.905 \frac{\mathrm{Btv}}{\mathrm{hr}}
\end{align*}
$$

Gas Saved:

$$
\begin{aligned}
& Q_{\text {Btu NG }}=\frac{Q}{\eta_{\text {Boiler }}}=\frac{7999084.905 \mathrm{Brv} / \mathrm{hr}}{.83} \\
& Q_{\text {BtuNG }}=9637451.693 \frac{\mathrm{Btc}}{\mathrm{hr}}
\end{aligned}
$$

cost Saved:

Operation yearly: 6000 hrs

$$
\begin{aligned}
\text { hourly Savings } & =Q_{\text {BtuNG }} \cdot \text { Gas Cost } \quad(23) \\
& =9637451.693 \frac{\mathrm{Btv}}{\mathrm{hr}} \cdot 0.000005 \frac{\$}{\mathrm{Bru}} \\
& =48.19 \$ / \mathrm{hr}
\end{aligned}
$$

$$
\text { yearly savings }=48.19 \frac{\mathrm{t}}{\mathrm{hr}} \cdot 6000 \mathrm{hr}
$$

$$
\text { Yearly savings }=289,123.55 \$ \text { (ANSWER S) }
$$

6.2 Sample Calculations

We start by analyzing the piping schematic to gather known values for the existing system (see Figure A1). We know that the wastewater flowing through the system is fully developed, steady, incompressible pipe flow and has a temperature of $180^{\circ} \mathrm{F}$. The pressure can be assumed as atmospheric ($\mathrm{P}_{\mathrm{w}}=14.7 \mathrm{psia}$). This assumption is made since both the pit (point 1) and sewer (point 2) lines are vented to atmosphere and are not pressurized. From this information we used the XSteam Tables to find all other water properties. Likewise, we can assume zero fluid velocity at points 1 and 2 due to zero pressurization. We are also given a 4in pipe diameter made of steel. Munson Table 8.1 was referenced for the equivalent roughness of commercial steel. The last pieces of given information regard the pump performance. We are given a flowrate of 300GPM and a pump impeller diameter of 8 in . From the provided pump curve, we determine the pump head, power, and NPSH at 300GPM, as well as the shutoff head and speed. These values are summarized in Table 1.

Table 1. Given and Known Values for Existing Piping System

Item	Value	Item	Value
Wastewater temperature (Tww)	$180{ }^{\circ} \mathrm{F}$	Pipe diameter (D)	4 in.
Wastewater pressure (Pww)	14.7 psia	Pipe roughness (ε)	0.00015 ft
Wastewater density ($\mathrm{pww}^{\mathrm{w}}$)	$60.580 \mathrm{lb} / \mathrm{ft}^{3}$	Flowrate (Q)	$\begin{gathered} 300 \mathrm{GPM}=0.6684 \mathrm{ft}^{3} / \mathrm{sec} \end{gathered}$
Wastewater viscosity (μ_{ww})	$0.00023166 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$	Impeller diameter (d)	8 in .
Inlet and outlet pressure $\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$	14.7 psia	Pump speed (v)	1750 RPM
Inlet and outlet velocities $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$	$0 \mathrm{ft} / \mathrm{sec}$	Pump head at Q ($\mathrm{H}_{\mathrm{pump}}$)	62 ft
Inlet height (Z_{1})	10 ft	Pump power at Q ($\mathrm{P}_{\text {pump }}$)	7.6 hp
Outlet height (Z_{2})	7 ft	Pump NPSH at Q (NPSHr)	8 ft
Total pipe length (L)	385 ft	Pump shutoff head (TDH)	69 ft
Acceleration due to gravity (g)	$32.2 \mathrm{ft} / \mathrm{sec}^{2}$	Turbine head ($\mathrm{H}_{\text {turbines }}$)	0 ft

Hence, a full Bernoulli's Equation between points 1 and 2 can be written for the existing system:

$$
\frac{P_{1}}{\rho_{W W} g}+Z_{1}+H_{\text {pump }}=\frac{P_{2}}{\rho_{W W} g}+Z_{2}+H_{\text {turbines }}+\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)
$$

After cancelling out known quantities the equation above can be simplified to:

$$
Z_{1}+H_{p u m p}=Z_{2}+\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)
$$

Where the velocity of wastewater through the pipes (V), the Darcy friction factor (f), and the sum of the pipe losses associated with pipe fittings (ΣK) is unknown. The task for problem 1 is to find the K loss coefficient for the control valve, so we will solve for $\Sigma \mathrm{K}$ then subtract known losses associated with the other pipe fittings at the end. First, we need to calculate V and f to determine head losses due to flow through the pipes. The average velocity of the wastewater through the 4in diameter pipe is calculated using the following equation:

$$
\begin{gathered}
Q=V A \\
V=\frac{Q}{\frac{\pi}{4}(D)^{2}}=\frac{0.6684 \mathrm{ft}^{3} / \mathrm{sec}}{\frac{\pi}{4}\left(\frac{4}{12} f t\right)^{2}}=7.6593 \frac{\mathrm{ft}}{\mathrm{sec}}
\end{gathered}
$$

Next, we need to calculate the Reynolds number for the flow to determine if the Darcy friction factor will be based on a laminar or turbulent flow analysis. The water properties used in the Reynolds number calculation are based on a wastewater temperature of $180^{\circ} \mathrm{F}$ and atmospheric pressure (i.e., conditions at point 1 in Figure A1) as shown:

$$
R e=\frac{\rho_{W W, 180^{\circ} \mathrm{F}} V D}{\mu_{W W, 180^{\circ} \mathrm{F}}}=\frac{\left(60.580 \mathrm{lb} / \mathrm{ft}^{3}\right)(7.6593 \mathrm{ft} / \mathrm{sec})\left(\frac{4}{12} \mathrm{ft}\right)}{0.00023166 \frac{\mathrm{lb}}{\mathrm{ft} \cdot \mathrm{sec}}}
$$

$$
R e=667645
$$

Hence, the flow through the pipes is turbulent and the friction factor will depend on the fluid density and pipe roughness. This factor can be approximated using the Haaland equation:

$$
\begin{gathered}
\frac{1}{f^{\frac{1}{2}}}=-1.8 \log _{10}\left(\frac{6.9}{R e}+\left(\frac{\frac{\varepsilon}{D}}{3.7}\right)^{1.11}\right) \\
\frac{1}{f^{\frac{1}{2}}}=-1.8 \log _{10}\left(\frac{6.9}{667645}+\left(\frac{\frac{0.00015 f t}{\frac{4}{12} f t}}{3.7}\right)^{1.11}\right) \\
\frac{1}{f^{\frac{1}{2}}}=7.6609 \\
\therefore f=0.017039
\end{gathered}
$$

Next, we need to solve for the total pipe length, L, in the existing system. This can be done by referring to Figure A1. In the elevation view, we take horizontal pipes to represent piping in the x -direction, while vertical pipes are in the y -direction. In the plan view of the system, we take horizonal pipes to represent the x -direction, while vertical pipes are in the z -direction. Making sure not to double count piping in the x-direction within the two views, we can calculate the total pipe length by taking the pipe inlet in the wastewater pit as the measurement starting point:

$$
\begin{gathered}
L_{x}=10 f t+200 f t+10 f t=220 f t \\
L_{y}=8 f t+2 f t+25 f t+25 f t+5 f t=65 f t \\
L_{z}=50 f t+50 f t=100 f t \\
L=L_{x}+L_{y}+L_{z}=385 f t
\end{gathered}
$$

We can now solve for $\Sigma \mathrm{K}$ using the simplified Bernoulli's Equation:

$$
\begin{gathered}
Z_{1}+H_{\text {pump }}=Z_{2}+\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right) \\
\Sigma K=\frac{2 g}{V^{2}}\left(Z_{1}-Z_{2}+H_{\text {pump }}\right)-\frac{f L}{D} \\
\Sigma K=\frac{2\left(32.2 \frac{f t}{\text { sec }^{2}}\right)}{(7.6593 f t / s e c)^{2}}(10 f t-7 f t+62 f t)-\frac{(0.017039)(385 f t)}{\left(\frac{4}{12} f t\right)} \\
\Sigma K=51.675
\end{gathered}
$$

The overall head losses associated with pipe fittings in the existing system is not the solution to Problem 1. We want to know the K loss coefficient for the control valve. So, the next step is to use the Crane reference to find head losses associated with all other pipe fittings. We know that for the given pipe diameter of 4 in . the friction factor, f_{T}, is 0.017 . From Figure A 1 , we also know the existing system consists of a sharp inlet, 7 standard 90° elbows, 1 gate valve ($\beta=1, \theta=0$), 1 control valve, and a sharp exit. The equations and values associated with these fittings are shown in Table 2.

Table 2. Head Losses for Pipe Fittings in Existing System

Item (Qty)	Equation	Value
Sharp inlet (x1)	$\mathrm{K}_{\text {in }}=0.5$	$\mathrm{~K}_{\text {in }}=0.5$
STD 90 ${ }^{\circ}$ elbows (x7)	$\mathrm{K}_{\text {elb }}=(7)(30)\left(\mathrm{f}_{\mathrm{T}}\right)$	$\mathrm{K}_{\text {elb }}=3.57$
Gate valve $(\mathrm{x} 1)$	$\mathrm{K}_{\mathrm{GV}}=(8)\left(\mathrm{f}_{\mathrm{T}}\right)$	$\mathrm{K}_{\mathrm{GV}}=0.136$
Sharp exit $(\mathrm{x} 1)$	$\mathrm{K}_{\text {exit }}=1.0$	$\mathrm{~K}_{\text {exit }}=1.0$
Control valve $(\mathrm{x} 1)$	$\mathrm{K}_{\mathrm{CV}}=\Sigma \mathrm{K}-\mathrm{K}_{\text {in }}-\mathrm{K}_{\text {elb }}-\mathrm{K}_{\mathrm{GV}}-\mathrm{K}_{\text {exit }}$	$\mathrm{K}_{\mathrm{CV}}=46.469$

Answer 1: Therefore, the K loss coefficient for the control valve is approximated as 46.469 for the existing system.

Next, we look at the planned piping system incorporating the recovery heat exchanger (HX), as well as additional piping and fittings. Like the steps for problem 1, we will begin by stating given and known values. We know that wastewater is cooled down from $180^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ after leaving the recovery HX per city requirements. Therefore, the average wastewater temperature flowing through the tubes, T_{ww}, is $160^{\circ} \mathrm{F}$. The piping after the HX will be analyzed separately from the piping before the HX. Hence, new water properties need to be evaluated at $160^{\circ} \mathrm{F}$ and $140^{\circ} \mathrm{F}$ where the wastewater pressure remains constant at 14.7 psia . In Table 3, the subscript " 1 " is used to refer to the piping system before the HX and " 2 " is after the HX. Water properties remain the same for the piping before the HX as those shown in Table 1. Table 4 lists the givens for the HX $1 / 2$ " tube flow. The subscript "tubes" is designated to values representing flow through the HX. The tube roughness is taken from Munson Table 8.1. The tube inner diameter, tube length, and number of tubes are taken from previous calculations (see page).

Table 3. Given and Known Values for Planned Piping System

Item	Value	Item	Value
Wastewater temperature ($\mathrm{T}_{\mathrm{ww}, 2}$)	$140{ }^{\circ} \mathrm{F}$	Pipe diameter ($\mathrm{D}_{\text {pipe }}$)	4 in.
Wastewater pressure (Pww,2)	14.7 psia	Pipe roughness ($\varepsilon_{\text {pipe }}$)	0.00015 ft
Wastewater density ($\rho \mathrm{ww}, 2$)	$61.378 \mathrm{lb} / \mathrm{ft}^{3}$	Flowrate (Q_{1})	$\begin{aligned} & 300 \mathrm{GPM}^{3} \\ = & 0.6684 \mathrm{ft}^{3} / \mathrm{sec} \end{aligned}$
Wastewater viscosity ($\mu \mathrm{ww}, 2$)	$0.0003134 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$	Wastewater velocity in pipes ($\mathrm{V}_{1, \text { pipe }}$)	$7.6593 \mathrm{ft} / \mathrm{sec}$
Minor head losses after HX $\left(\Sigma \mathrm{K}_{2 \text {, pipe }}\right)^{1}$	4.56	Minor head losses before HX ($\left.\Sigma \mathrm{K}_{1, \text { pipe }}\right)$	unknown
Pipe length $\left(\mathrm{L}_{2}\right)^{2}$	208 ft	Pipe length $\left(\mathrm{L}_{1}\right)^{2}$	213 ft

Notes:

1. Minor head losses through the piping after the HX results from one sharp inlet from the plenum to the rest of the piping, one STD branch tee, four STD 90° elbows and one sharp exit at the sewer outlet.
2. L_{1} and L_{2} are calculated by assuming the HX bypass is in the center of the 200ft pipe and knowing that the new total pipe length is 421 ft .

Table 4. Given and Known Values for Planned HX $1 / 2$, ${ }^{\prime}$ Tubing

Item	Value	Item	Value
Average wastewater temperature $\left(\bar{T}_{\mathrm{ww}}\right)$	$160^{\circ} \mathrm{F}$	Tube inner diameter $\left(\mathrm{D}_{\text {tubes }}\right)$	0.402 in.
Wastewater pressure $\left(\mathrm{P}_{\text {ww,tubes }}\right)$	14.7 psia	Tube roughness $\left(\varepsilon_{\text {tubes }}\right)$	0.000005 ft
Wastewater density $\left(\rho_{\left.\mathrm{ww}, 180^{\circ} \mathrm{F}\right)^{1}}\right.$	$60.580 \mathrm{lb} / \mathrm{ft}^{3}$	Flowrate (Q)	300 GPM $=0.6684 \mathrm{ft} 3 / \mathrm{sec}$
Wastewater viscosity $\left(\mu_{\text {ww,tubes }}\right)$	$0.00026733 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$	Number of tubes $\left(\mathrm{N}_{\text {tubes }}\right)$	232
Tube length $\left(\mathrm{L}_{\text {tubes }}\right)$	12 ft	Minor head losses through tubes $\left(\Sigma \mathrm{K}_{\text {tubes }}\right)^{2}$	1.5

Notes:

1. Wastewater density for the tubes is not evaluated at the average wastewater temperature, but instead at the higher temperature of $180^{\circ} \mathrm{F}$ due to the velocity limit that exists on the system. All other properties are evaluated at $160^{\circ} \mathrm{F}$.
2. Minor head losses through tubes result from one sharp entrance into the tubes from the plenum and one sharp exit from the tubes to the exit plenum.

Now, we can write the simplified Bernoulli's equation for the planned piping system assuming $1 / 2, ’$ tubing is used. We know that the pressure at points 1 and 2 is atmospheric and therefore cancels out. We also know the turbine head remains zero. Hence, the Bernoulli's equation for the planned piping system can be written as such:

$$
Z_{1}+H_{\text {pump }}=Z_{2}+\left(\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)\right)_{180^{\circ} F, p i p e}+\left(\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)\right)_{140^{\circ} F, p i p e}+\left(\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)\right)_{\text {tubes }}
$$

Note that the velocity of wastewater flow through the piping, $\mathrm{V}_{\mathrm{pipe}}$, will be different before and after the HX due to its dependence on a changing flowrate. We will have to calculate the wastewater velocity in the piping after the HX. Furthermore, the Darcy friction factor will remain the same for the piping before the HX (i.e., at temperature $180^{\circ} \mathrm{F}$) due to its dependence on fluid density and pipe roughness. However, the Darcy friction factor for the piping after the HX (i.e., at temperature $140^{\circ} \mathrm{F}$) will need to be evaluated. The sum of the pipe losses associated with pipe fittings before the $\mathrm{HX}, \Sigma \mathrm{K}_{1 \text {,pipe }}$, is also unknown. This value will be used to calculate the new K loss coefficient for the control valve. Furthermore, the velocity of wastewater through the tubes ($\mathrm{V}_{\text {tubes }}$) and the Darcy friction factor associated with the tubes ($\mathrm{f}_{\text {tubes }}$) will need to be evaluated. We begin by calculating the velocity of the wastewater in the piping after the HX, $\mathrm{V}_{2 \text {,pipe }}$, which has properties of water at $140^{\circ} \mathrm{F}$ and atmospheric pressure:

$$
\begin{gathered}
Q_{1}=\frac{\dot{\mathrm{m}}_{1}}{\rho_{1}}, Q_{2}=\frac{\dot{\mathrm{m}}_{2}}{\rho_{2}}, \dot{\mathrm{~m}}_{1}=\dot{\mathrm{m}}_{2} \\
\therefore Q_{2}=\frac{\rho_{1,180^{\circ} \mathrm{F}}}{\rho_{2,140^{\circ} \mathrm{F}}} Q_{1}=\frac{60.580 \frac{\mathrm{lb}}{f t^{3}}}{61.378 \frac{l b}{f t^{3}}} \cdot 0.6684 \frac{\mathrm{ft}}{\mathrm{sec}} \\
=0.65971 \frac{\mathrm{ft}}{} \mathrm{~s}^{3} \\
V_{140^{\circ} \mathrm{F}, p i p e}=\frac{Q_{2}}{\frac{\pi}{4}(D)^{2}}=\frac{0.65971 \mathrm{ft} / \mathrm{sec}}{\frac{\pi}{4}\left(\frac{4}{12} \mathrm{ft}\right)^{2}}=7.5597 \mathrm{ft} / \mathrm{sec}
\end{gathered}
$$

Next, we calculate the Reynolds number for the pipe flow after the HX:

$$
\begin{gathered}
R e=\frac{\rho_{W W, 2} V_{2, p i p e} D_{\text {pipe }}}{\mu_{W W, 2}}=\frac{\left(61.378 \mathrm{lb} / \mathrm{ft}^{3}\right)(7.5597 \mathrm{ft} / \mathrm{sec})\left(\frac{4}{12} f t\right)}{0.0003134 \frac{\mathrm{lb}}{\mathrm{ft} \cdot \mathrm{sec}}} \\
\operatorname{Re}=493512
\end{gathered}
$$

Hence, the flow through the piping after the HX is turbulent and the friction factor is approximated using the Haaland equation:

$$
\begin{gathered}
\frac{1}{f^{\frac{1}{2}}}=-1.8 \log _{10}\left(\frac{6.9}{R e}+\left(\frac{\frac{\varepsilon_{\text {pipe }}}{D_{\text {pipe }}}}{3.7}\right)^{1.11}\right) \\
\frac{1}{f^{\frac{1}{2}}}=-1.8 \log _{10}\left(\frac{6.9}{493511}+\left(\frac{\frac{0.00015 f t}{\frac{4}{12} f t}}{3.7}\right)^{1.11}\right) \\
\frac{1}{f^{\frac{1}{2}}}=7.6111 \\
\therefore f_{140^{\circ} \mathrm{F}, \mathrm{pipe}}=0.017262
\end{gathered}
$$

Next, we calculate the velocity of wastewater through the tubes:

$$
\begin{gathered}
Q=(V A)_{\text {tubes }}=V_{\text {tubes }}\left(N_{\text {tubes }} \frac{\pi D_{\text {tubes }}^{2}}{4}\right) \\
V_{\text {tubes }}=\frac{Q}{N_{\text {tubes }}\left(\frac{\pi}{4}\right)\left(D_{\text {tubes }}\right)^{2}}=\frac{0.6684 f t^{3} / \mathrm{sec}}{(232)\left(\frac{\pi}{4}\right)\left(\frac{0.402}{12} f t\right)^{2}}=3.2687 \frac{\mathrm{ft}}{\mathrm{sec}}
\end{gathered}
$$

We can use the velocity through the tubes to find the Reynolds number for flow through the HX as follows:

$$
\begin{gathered}
R e=\frac{\rho_{W W, 180{ }^{\circ} \mathrm{F}} V_{\text {tubes }} D_{\text {tubes }}}{\mu_{W W, \text { tubes }}}=\frac{\left(60.580 \mathrm{lb} / \mathrm{ft}^{3}\right)(3.2687 \mathrm{ft} / \mathrm{sec})\left(\frac{0.402}{12} f t\right)}{0.00026733 \frac{\mathrm{lb}}{\mathrm{ft} \cdot \mathrm{sec}}} \\
R e=24814
\end{gathered}
$$

Hence, the flow through the HX tubes is turbulent and the friction factor associated with the tubes is approximated using the Haaland equation:

$$
\frac{1}{f^{\frac{1}{2}}}=-1.8 \log _{10}\left(\frac{6.9}{R e}+\left(\frac{\frac{\varepsilon_{\text {tubes }}}{D_{\text {tubes }}}}{3.7}\right)^{1.11}\right)
$$

$$
\begin{gathered}
\frac{1}{f^{\frac{1}{2}}}=-1.8 \log _{10}\left(\frac{6.9}{24814}+\left(\frac{\frac{0.000005 f t}{\frac{0.402}{12} f t}}{3.7}\right)^{1.11}\right) \\
\frac{1}{f^{\frac{1}{2}}}=6.3641 \\
\therefore f_{\text {tubes }}=0.02469
\end{gathered}
$$

Finally, we can solve for $\Sigma \mathrm{K}_{\mathrm{pipe}}$ using the simplified Bernoulli's Equation for the planned piping system:

$$
\begin{aligned}
& Z_{1}+H_{\text {pump }}=Z_{2}+\left(\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)\right)_{180^{\circ} \mathrm{F}, \text { pipe }}+\left(\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)\right)_{140^{\circ} \mathrm{F}, p i p e}+\left(\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)\right)_{\text {tubes }} \\
& \Sigma K_{1, \text { pipe }}=\frac{2 g}{V_{1, p i p e}^{2}}\left(Z_{1}+H_{\text {pump }}-Z_{2}-\left(\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)\right)_{\text {tubes }}-\left(\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)\right)_{140^{\circ} \mathrm{F}, \text { pipe }}\right)-\left(\frac{f L}{D}\right)_{180^{\circ} \mathrm{F}, \mathrm{pipe}} \\
& \Sigma K_{1, \text { pipe }}=\frac{2\left(32.2 f t / s e c^{2}\right)}{(7.6593 f t / s e c)^{2}}\left(10 f t+62 f t-7 f t-\left(\frac{(3.2687 f t / s e c)^{2}}{2\left(\frac{32.2 f t}{s e c^{2}}\right)}\left(\frac{(0.02469)(12 f t)}{\left(\frac{0.402}{12} f t\right)}+1.5\right)\right)_{\text {tubes }}\right. \\
& \left.-\left(\frac{(7.5597 f t / s e c)^{2}}{2\left(\frac{32.2 f t}{s e c^{2}}\right)}\left(\frac{(0.017262)(208 f t)}{\left(\frac{4}{12} f t\right)}+4.56\right)\right)_{140^{\circ} \mathrm{F}, \text { pipe }}\right)-\left(\frac{(0.017039)(213 f t)}{\left(\frac{4}{12} f t\right)}\right)_{180^{\circ} \mathrm{F}, \text { pipe }} \\
& \Sigma K_{1, p i p e}=43.647
\end{aligned}
$$

We want to know the new K loss coefficient for the control valve. So, the next step is to use the Crane reference to find head losses associated with all new pipe fittings (f_{T} is still equivalent to 0.017). The equations and values associated with these fittings are shown in Table 5.

Table 5. Head Losses for Pipe Fittings before HX in Planned System

Item (Qty)	Equation	Value
Sharp inlet $(\mathrm{x} 1)$	$\mathrm{K}_{\text {in }}=0.5$	$\mathrm{~K}_{\text {in }}=0.5$
STD 90 ${ }^{\circ}$ elbows $(\mathrm{x} 5)$	$\mathrm{K}_{\text {elb }}=(5)(30)\left(\mathrm{f}_{\mathrm{T}}\right)$	$\mathrm{K}_{\mathrm{elb}}=2.55$
Gate valve $(\mathrm{x} 1)$	$\mathrm{K}_{\mathrm{GV}}=(1)(8)\left(\mathrm{f}_{\mathrm{T}}\right)$	$\mathrm{K}_{\mathrm{GV}}=0.136$
STD branch tee $(\mathrm{x} 1)^{1}$	$\mathrm{~K}_{\mathrm{BT}}=(1)(60)\left(\mathrm{f}_{\mathrm{T}}\right)$	$\mathrm{K}_{\mathrm{BT}}=1.02$
Sharp exit $(\mathrm{x} 1)^{2}$	$\mathrm{~K}_{\text {exit }}=1.0$	$\mathrm{~K}_{\text {exit }}=1.0$
Control valve $(\mathrm{x} 1)$	$\mathrm{K}_{\mathrm{CV}}=\Sigma \mathrm{K}_{1, \text { pipe }}-\mathrm{K}_{\text {in }}-\mathrm{K}_{\text {elb }}-\mathrm{K}_{\mathrm{GV}}-\mathrm{K}_{\mathrm{BT}}-\mathrm{K}_{\text {exit }}$	$\mathrm{K}_{\mathrm{CV}}=38.441$

Notes:

1. Branch tees are added to the system to function as 90° elbows.
2. The additional sharp exit is the pipe exit into the plenum of the HX

Note that the overall head loss in the planned piping system, h_{L}, is a constant for all tubing options at the given design flow since the control valve ensures that the following equation always holds true:

$$
Z_{1}+H_{\text {pump }}=Z_{2}+h_{L}
$$

Where

$$
h_{L}=\left(\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)\right)_{180^{\circ} \mathrm{F}, p i p e}+\left(\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)\right)_{140^{\circ} \mathrm{F}, \text { pipe }}+\left(\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)\right)_{\text {tubes }}
$$

Hence, the overall head loss is a function of the pump head rise and the change in elevation between the inlet and exit points:

$$
h_{L}=Z_{1}-Z_{2}+H_{\text {pump }}=10 \mathrm{ft}-7 \mathrm{ft}+62 \mathrm{ft}=65 \mathrm{ft}
$$

Answer 2a: Therefore, the overall head loss through the proposed piping system at the design flow (i.e., $Q=300 \mathrm{GPM}$) is 65 ft . This is true for all tubing options since the overall head loss is a function of the pump head rise and the difference in elevation between points 1 and 2 in Figure A1.

Answer 2b: We also determined that the new K loss coefficient associated with the control valve for the proposed piping system is approximately 38.441 . This is true only for the $1 / 2$, tubing on which the calculations in the previous steps are based. In order to find the new K loss coefficient of the control valve for the other tubing options, one would have to use the appropriate tubing properties to evaluate $\Sigma K_{\text {pipe }}$ (i.e., tube inner diameter, tube velocity, and the Darcy friction factor associated with the tubes).

Problem 3 asks to compute the pump work change and electrical cost savings/increase as a result of changing the piping system from existing to proposed. Table 1 lists the pump power for a flowrate of 300 GPM as 7.6 hp per the Goulds pump curve, which is approximately 5.667 kW . This holds true for both the existing and planned systems since the control valve ensures the pump operates at the same point on the curve (i.e., same impeller diameter and flowrate, therefore same head rise).

Answer 3a: Hence, the pump work stays the same between the piping systems (i.e., zero pump work change). Pump work is approximately 7.6 hp or 5.667 kW . This is true for all tubing options.

The electrical costs associated with the operation of the pump can be computed using the given electricity cost of $\$ 0.070 / \mathrm{kWh}$. Thus, the hourly pump electricity costs can be calculated as follows:

$$
\text { Hourly pump electricity costs }=\frac{\$ 0.070}{\mathrm{kWh}} \times 5.667 \mathrm{~kW}=\frac{\$ 0.3967}{\mathrm{hr}}
$$

With a given uptime of 24 hours per day, 5 days per week, and 50 weeks per year, we can calculate the total hours the plant operates per year:

$$
\text { Plant uptime per year }=\frac{24 \mathrm{hrs}}{\text { day }} \times \frac{5 \text { days }}{\text { week }} \times \frac{50 \text { weeks }}{\text { year }}=\frac{6000 \mathrm{hrs}}{\text { year }}
$$

Hence, the yearly pump electricity costs can be approximated as follows:

$$
\text { Yearly pump electricity costs }=\frac{\$ 0.3967}{\mathrm{hr}} \times \frac{6000 \mathrm{hrs}}{\text { year }}=\$ 2380 / \text { year }
$$

Note that this cost is based on a pump work of 7.6 hp . Since this value remains constant between the two systems, we know that the pump electrical costs will also remain the same.

Answer 3b: Therefore, there are zero pump electrical cost savings/increases as a result of modifying the piping system. In both cases, the yearly electrical costs associated with the pump operation are approximately $\mathbf{\$ 2 3 8 0}$ per year. This is true for all tubing options.

Next, we determine the feasibility of pumping the pit down to the bottom of the inlet pipe. In other words, we must identify if any NPSH issues exist. From Figure A1, we know that the bottom of the inlet pipe is at an elevation of 2 ft . We have also assumed that the pump lies in the middle of the 10 ft horizontal pipe. We know the pump height is 12 ft . In order to find how far below the pump height the pump can operate, $\mathrm{Z}_{\text {max }}$, before cavitation we will rely on the following equation:

$$
Z_{\max }=\frac{P_{a t m}}{\gamma}-\Sigma h_{L}-\frac{P_{v}}{\gamma}-N P S H r
$$

Where Σh_{L} represents the overall head loss between the free surface and the pump impeller inlet. In other words, all head losses before flow reaches the pump. Hence, the equation can be rewritten as follows:

$$
Z_{\max }=\frac{P_{a t m}}{\gamma}-\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)_{\text {pump }}-\frac{P_{v}}{\gamma}-N P S H r
$$

Known quantities for this scenario are listed in Table 6. Note that the wastewater flow velocity through the pipe section remains consistent with previous calculations due to a constant flowrate and pipe diameter. The Darcy friction factor has already been evaluated for the water properties experienced before flow reaches the pump. However, the length referenced in this equation only consists of the pipe length before reaching the pump and is therefore a new value as shown in Table 6. P_{v} refers to the water vapor pressure evaluated at $180^{\circ} \mathrm{F}$ using X-Steam Tables. Lastly, NPSHr was evaluated using the Goulds pump curve and a given flowrate of 300GPM.

Table 6. Given and Known Values for Piping System Before Pump

Item	Value	Item	Value
Wastewater temperature (T_{ww})	$180{ }^{\circ} \mathrm{F}$	Pipe diameter (D)	4 in .
Wastewater pressure (Pww)	14.7 psia	Pipe roughness (ε)	0.00015 ft
Wastewater specific gravity $(\gamma)^{1}$	$60.580 \mathrm{lbf} / \mathrm{ft}^{3}$	Flowrate (Q)	$\begin{gathered} 300 \mathrm{GPM} \\ =0.6684 \mathrm{ft}^{3} / \mathrm{sec} \end{gathered}$
Atmospheric pressure ($\mathrm{P}_{\mathrm{atm}}$)	$\begin{aligned} & 14.7 \mathrm{psia} \\ = & 2116.8 \mathrm{lbf} / \mathrm{ft}^{2} \end{aligned}$	Pipe length (L$)^{2}$	15 ft
Water vapor pressure (P_{v})	$\begin{aligned} & 7.5196 \mathrm{psia} \\ = & 1082.8 \mathrm{lbf} / \mathrm{ft}^{2} \end{aligned}$	Pipe velocity (V)	$7.6593 \mathrm{ft} / \mathrm{sec}$
Acceleration due to gravity (g)	$32.2 \mathrm{ft} / \mathrm{sec}^{2}$	Darcy friction factor (f)	0.017039
Pump NPSH at Q (NPSHr)	8 ft	Sum of K loss coefficients $(\Sigma K)^{3}$	1.01
Notes: 1. The specific gravity is calculated by taking the product of acceleration due to gravity and water density at $180^{\circ} \mathrm{F}$ and 14.7 psia . Then a conversion factor of $1 \mathrm{lbf}=32.2 \mathrm{lbm}-\mathrm{ft} / \mathrm{sec}^{2}$ is applied to give us specific gravity in units of $\mathrm{lbf} / \mathrm{ft}^{3}$. 2. New pipe length assumes that the pump lies in the middle of the 10 ft horizontal pipe run shown in Figure A1. 3. Sum of K loss coefficients before reaching the pump consists of a sharp entrance and one elbow for which $\mathrm{K}_{\text {in }}=0.5$ and $\mathrm{K}_{\text {elb }}=30 \mathrm{f}_{\mathrm{T}}=(30)(0.017)=0.51$.			

Hence, $\mathrm{Z}_{\text {max }}$ can be evaluated by plugging in all known values into the previous equation:

$$
\begin{gathered}
Z_{\max }=\frac{P_{a t m}}{\gamma}-\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)_{\text {pump }}-\frac{P_{v}}{\gamma}-N P S H r \\
Z_{\max }=\frac{2116.8 l b f / f t^{2}}{60.580 l b f / f t^{3}}-\frac{(7.6593 f t / s e c)^{2}}{2\left(32.2 f t / s e c^{2}\right)}\left(\frac{(0.017039)(15 f t)}{\left(\frac{4}{12} f t\right)}+1.01\right)_{\text {pump }}-\frac{1082.8 l b f / f t^{2}}{60.580 l b f / f t^{3}}-8 f t \\
Z_{\max }=7.450 \mathrm{ft}
\end{gathered}
$$

Answer 5a: This tells us that the pump can only operate safely without cavitation when the water level is at a maximum of $7.450 f t$ below the pump height. Since the bottom of the inlet pipe is 10ft below the pump height, this means that we cannot pump the pit down to the bottom of the inlet pipe using the given design conditions. Hence, the system will encounter NPSH issues at a water level of $\mathbf{7 . 4 5 0 f t}$ below the pump height. Specifically, $\mathbf{2 . 5 5 f t}$ of wastewater above the pipe inlet cannot be pumped in this case.

To determine if the existing pump can be used at a different flowrate to pump the pit down to the bottom of the inlet pipe, we will calculate the NPSHr for a $\mathrm{Z}_{\max }$ of 10 ft . If $\mathrm{Z}_{\max }$ is equal to 10 ft
then we can indeed pump the pit down to the bottom of the inlet pipe. We will use the same equation as before, except we will rearrange the terms to solve for NPSHr:

$$
\begin{gathered}
N P S H r=\frac{P_{a t m}}{\gamma}-\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)_{\text {pump }}-\frac{P_{v}}{\gamma}-Z_{\max } \\
N P S H r=\frac{2116.8 l b f / f t^{2}}{60.580 l b f / f t^{3}}-\frac{(7.6593 f t / s e c)^{2}}{2\left(32.2 f t / s e c^{2}\right)}\left(\frac{(0.017039)(15 f t)}{\left(\frac{4}{12} f t\right)}+1.01\right)_{\text {pump }}-\frac{1082.8 l b f / f t^{2}}{60.580 l b f / f t^{3}}-10 f t \\
N P S H r=5.450 f t
\end{gathered}
$$

Answer 5b: This value of NPSHr is too low for what can be achieved by the current pump at the given speed. Even at a flowrate of 200GPM, NPSHr is only reduced to 6 ft which still does not allow us to pump down to the bottom of the inlet pipe ($\mathrm{Z}_{\text {max }}$ of 9.450 ft and $\mathbf{0 . 5 5 f t}$ above the pipe inlet cannot be pumped). With the specified flowrate of 300GPM, we can only pump down to 2.55 ft above the pipe inlet. Therefore, an external solution will need to be adopted to solve the NPSH issue and pump down to the pipe inlet level. In order to pump the remaining 2.55 feet above the inlet while maintaining a flowrate of 300 GPM, either the pump speed must be reduced (which can be done by installing a variablefrequency drive) or the impeller diameter must be reduced by shaving the impeller. These changes will minimize NPSHr in the same way that reducing the flowrate minimizes the value, thereby getting us closer to a $\mathbf{Z}_{\text {max }}$ of $\mathbf{1 0 f t}$. This can be proven using the following affinity law:

$$
\begin{gathered}
C_{Q 1}=C_{Q 2} \\
\frac{Q_{1}}{n_{1} D_{1}^{3}}=\frac{Q_{2}}{n_{2} D_{2}^{3}} \\
\frac{Q_{2}}{Q_{1}}=\left(\frac{n_{2}}{n_{1}}\right)\left(\frac{D_{2}}{D_{1}}\right)^{3}
\end{gathered}
$$

Where Q is the wastewater flowrate, n denotes the pump speed, and D represents the impeller diameter. Therefore, our goal of pumping down to the pipe inlet level can be achieved by either reducing the pump speed or reducing the impeller diameter. Reducing the impeller diameter will have a larger effect due to the presence of an exponent in the equation above.

There is two feet of wastewater in the pit below the pump inlet piping. In order to fully empty the pit, either additional piping must be installed, or a temporary pump, such as a sump pump that can be immersed in the water, must be installed in order to pump out that last 2 feet of wastewater.

Table 8: Given and Known Values for Economic Analysis

Item	Value	Item	Value
\# of tubes (1/2")	232	Hx Length (ft)	12
Tube Price per foot $(\$ / \mathrm{ft})$	5.66	Shell Diameter (in)	10
Shell Pipe Cost (\$/in)	1500	Installation Cost $(\$ / t u b e)$	20
Cleaning Cost (\$)	10	Cleanings per year	4
Yearly lost power (kWh)	$1,186,335$	Gas Saving Benefit $(\$)$	$289,125.59$
Power cost (\$/kWh)	0.07	Turbine Energy Output (BTU/lb)	112.49
Turbine Flowrate w/o Recovery Hx (lbm/hr)	125000	Conversion for BTU/hr to kW	0.000293
Turbine Flowrate w/ Recovery Hx (lbm/hr)	119003.2	Discount Rate	5%
Inflation Rate	3%	Time Period (years)	20

To find the initial cost of the heat exchanger we must include the material costs of the tubes, the pipe used for the shell, and the installation cost for the project. Calculate the total cost of the tubing using the number of tubes, length, and cost per foot of tubing

$$
C_{T}=\# \text { of tubes } \cdot \text { Hx length } \cdot \text { tube price }=232 \text { tubes } \cdot 12 \mathrm{ft} \cdot \$ 5.66 / \mathrm{ft}=\$ 15,757.44
$$

Calculate the total cost of the shell using the required shell diameter to contain all tubes and the cost per inch of diameter. The cost per inch of diameter is a given value assuming the full length of our heat exchanger.

$$
C_{S}=\text { Shell diameter } \cdot \text { pipe cost per inch }=10 \text { in } \cdot \$ 1500 / \text { in }=\$ 15,000.00
$$

The installation cost is based on the number of tubes and a fixed cost per tube to install multiplied together.

$$
C_{i}=\# \text { of tubes } \cdot \text { install cost per tube }=232 \text { tubes } \cdot \$ 20.00 / \text { tube }=\$ 4,640.00
$$

To calculate the total initial cost (C) you sum tube cost $\left(\mathrm{C}_{\mathrm{T}}\right)$, shell cost (Cs), and installation cost $\left(\mathrm{C}_{\mathrm{i}}\right)$. This is a one-time cost for the following economic analysis.

$$
C=C_{T}+C_{S}+C_{i}=\$ 15,757.44+\$ 15,000.00+\$ 4,640.00=\$ 35,397.44
$$

Answer 1: Thus the total cost of the heat exchanger with $1 / 2, \prime$ tubing is approximately $\$ 35,397.44$. The same procedure would be used to calculate the total cost associated with the other heat exchanger options.

To determine the simple payback period, we will need to have the net yearly benefit of the project. The yearly costs are subtracted from the yearly savings to get the benefit. First calculate the annual cleaning cost $\left(\mathrm{C}_{\mathrm{c}}\right)$ by multiplying together the number of tubes, cleanings per year, and the cost per tube of cleaning.

$$
C_{c}=\text { Cost per tube } \cdot \# \text { of tubes } \cdot \text { quarters per year }=\$ 10 / \text { tube } \cdot 232 \text { tubes } \cdot 4=\$ 9,280
$$

To find the two different turbine powers you multiply the flowrate of steam, the energy from each pound of steam, and a conversion factor to get kW of power from BTU/hr.

$$
\text { Turbine Power }=\text { turbine flowrate } \cdot \text { energy per lb of steam } \cdot \text { conversion }
$$

Turbine Power existing $=125000 \mathrm{lbmhr} \cdot 112.49 \mathrm{BTUlbm} \cdot\left(2.93 * 10^{-4}\right) \mathrm{kW} / \mathrm{BTU} / \mathrm{hr}=4121.06 \mathrm{~kW}$
Turbine Power with $H x=119003.2 \mathrm{lbmhr} \cdot 112.49 \mathrm{BTUlbm} \cdot\left(2.93 * 10^{-4}\right) \mathrm{kW} / \mathrm{BTU} / \mathrm{hr}=3923.35 \mathrm{~kW}$
The power lost is found by subtracting the lower energy production from the turbine with a heat exchanger in the system from the existing turbine energy production.

$$
\begin{aligned}
\text { Power Lost }= & \text { Turbine Power }[\text { existing }]-\text { Turbine Power }[\text { with } H x] \\
& =4121.06 \mathrm{~kW}-3923.35 \mathrm{~kW}
\end{aligned}
$$

The yearly lost power is calculated by multiplying by the power lost during operation and the yearly uptime of the facility.

$$
\text { Yearly Lost Power }=\text { Power lost } \cdot \text { Yearly Uptime }=197.71 \mathrm{~kW} \cdot 6000 \mathrm{hrs}
$$

The cost of lost power is calculated from the yearly lost power multiplied by the given power cost.

$$
C_{p l}=\text { yearly lost power } \cdot \text { power cost }=1,186,235 \mathrm{kWh} \cdot \$ 0.07 / \mathrm{kWh}=\$ 83,036.47
$$

The net yearly benefit can be found by subtracting the total initial cost and the lost power production from the gas savings that was calculated in previous calculations (see page).

$$
N Y B=\text { gas savings }-C_{p l}-C_{c}=\$ 289,125.59-\$ 83,036.47-\$ 9,280.00=\$ 196,809.12 / \text { year }
$$

The simple payback in years can be found by dividing the total initial cost by the net yearly benefit and then multiplying by 12 for the payback in months.

$$
\text { Payback }=\frac{C}{N Y B} \cdot \frac{12 \text { months }}{1 \text { year }}=\frac{\$ 35,397.44}{\$ 196,809.12 / \text { year }} \cdot \frac{12 \text { months }}{1 \text { year }}=2.158 \text { months }
$$

Answer 2: This tells us that the cost of installing the heat exchanger with $1 / 2^{\prime}$, tubing will be paid back to the plant in the form of gas savings after approximately 0.18 years (i.e., 2.16 months). The calculation of yearly savings considers the yearly cleaning cost and cost of lost power due to reduced turbine operations. The simple payback period for the other tubing options can be calculated using the same procedure as above.

The net present value will be calculated using a discount rate of 5\% and an inflation rate of 3\% over a 20 -year period. The present value at year 0 will be $\$ 35,397.44$. The present value of the annual savings over n lifetime years can be found by using the equation:

$$
P V_{\text {annual }}=\frac{N Y B}{1+f} \cdot\left(\frac{\left(1+i^{\prime}\right)^{n}-1}{i^{\prime} \cdot\left(1+i^{\prime}\right)^{n}}\right)
$$

Where the effective interest rate, i^{\prime}, can be found by using the inflation rate, f, and the discount rate, i, as such:

$$
i^{\prime}=\frac{i-f}{1+f}=\frac{0.05-0.03}{1+0.03}=0.0194=1.94 \%
$$

Which means $P V_{\text {annual }}$ over an estimated life of $\mathrm{n}=20$ years can be calculated using the previously stated equation:

$$
P V_{\text {annual }}=\frac{N Y B}{1+f} \cdot\left(\frac{\left(1+i^{\prime}\right)^{n}-1}{i^{\prime} \cdot\left(1+i^{\prime}\right)^{n}}\right)=\frac{\$ 196809.12}{1.03} \cdot\left(\frac{1.01942^{20}-1}{0.01942 \cdot 1.01942^{20}}\right)=\$ 3,142,014.91
$$

Then, the salvage value after inflation can be found by using the inflation rate, f, and the given constraint that the heat exchanger will salvage for a quarter of its initial cost.

$$
S=0.25 \cdot \text { initial cost } H X \cdot(1+f)^{20}=0.25 \cdot \$ 35,397.44 \cdot(1.03)^{20}=\$ 15,982.93
$$

Next, the present value of the salvage worth after 20 years can be calculated using the given discount rate, i, as such:

$$
P V_{S}=\frac{S}{(1+i)^{20}}=\frac{\$ 15982.93}{1.05^{20}}=\$ 6,023.80
$$

Hence, the net present value, $N P V$, can be found by adding the present value of the annual savings and the present value of the salvage worth over a period of 20 years, and subtracting the initial cost associated with the HX.

$$
N P V=P V_{\text {annual }}+P V_{S}-C=\$ 3,142,014.91+\$ 6,023.80-\$ 35,397.44=\$ 3,112,641
$$

Answer 3: The project net present value (NPV) is approximately $\mathbf{\$ 3}, 112,641$ for the $1 / 2$,' tubing option. The NPV of the other tubing options can be calculated using the same procedure as above. They are differentiated by only a few thousand dollars, with the $3 / 4$,' tubing option providing the highest NPV. Therefore, the installation of a recovery heat exchanger is a sound economic decision. Furthermore, this installation satisfies the requirements of the city to reduce the wastewater temperature to $140^{\circ} \mathrm{F}$ before discharge into the sewer. All calculations above are based on meeting this requirement precisely. Future engineering studies could benefit from varying the wastewater discharge temperature to determine an optimum NPV.

Results

Heat Exchanger Construction				Heat Transfer Values	
Item	1/2" Tubing	5/8" Tubing	3/4" Tubing	Heat Rate (BTU/s)	1620.46
Number of Tubes (LMTD)	232	204	195	Make-up Water Exit Temp (${ }^{\circ} \mathrm{F}$)	106.72
Number of Tubes (ε-NTU)	232	204	195	Steam Reduction to Secondary HX (lb/hr)	5996.82
Recovery HX Diameter (LMTD) (in)	9.996	11.717	13.747	Boiler Fuel Cost Savings (\$/hr)	48.19
Recovery HX Diameter (ε-NTU) (in)	9.996	11.717	13.747		
Recovert HX Diameter (Rounded) (in)	10	12	14		

Piping, Pumping, and Control Valve Values

Economic Analysis

Item	1/2" Tubing		5/8" Tubing		3/4" Tubing	
Recovery HX Inital Cost (including installation)	\$	35,397.44	\$	36,841.44	\$	41,092.80
Project Simple Payback Period (years)		0.180		0.186		0.207

Project Net Present Value $\quad \$ 3112641.33$ \$3.129.323.62 \$3.131.543.07

Cost Calculations
Costs For Tubes Installation Shell Cost Total Capital Cost $\$ 5.66$ \$15,757.44 \$4,640.00 \$15,000.00 $\$ 6.03$ \$14,761.44 \$4,080.00 \$18,000.00 $\$ 6.92$ \$16,192.80 \$3,900.00 \$21,000.00 $\$ 20.00$
$5 / 8^{\prime \prime}$ Tube (per ft.)
5/8" Tube (per ft.)
3/4" Tube (per ft.)
nstall per tube:
install per tube:

Costs are calculated using the rounded values for shell diameter, found in cells Q23:R25
Costs are based on the largest number of tubes calculated (the most expensive HX.)

Tube Packing \& Shell Size Calculations

Givens, Tabulated Values, and Basic Calculations			
Tbar(WW):	$160{ }^{\circ} \mathrm{F}$	Flow(WW):	$0.668402778 \mathrm{ft}^{\text {3 }} / \mathrm{s}$
Tbar(MW):	$83.362{ }^{\circ} \mathrm{F}$	Flow(MW):	$0.557002315 \mathrm{ft} 3 / \mathrm{s}$
P (WW):	14.7 psia		
$\mathrm{P}(\mathrm{MW})$:	100 psia		
From XSteam:			
Density(WW):	$60.5804 \mathrm{lb} / \mathrm{ft}^{\wedge} 3$	Mdot(WW):	$40.49210053 \mathrm{lbm} / \mathrm{s}$
Density(MW):	$62.3836 \mathrm{lb} / \mathrm{ft}^{\wedge} 3$	Mdot(MW):	$34.7477995 \mathrm{lbm} / \mathrm{s}$
Cp(WW):	$1.0005 \mathrm{BTU} / \mathrm{lbmR}$		
Cp(MW):	0.9981 BTU/lbmR		
From Tables:		C(WW):	40.51162181 BTU/Rs
R"(f) (WW) (Metric)	$0.0002\left(\mathrm{~m}^{\wedge} 2^{*} \mathrm{k}\right) / \mathrm{W}$	C(MW)	34.68166026 BTU/Rs
R"(f) (MW) (Metric)	$0.0001\left(\mathrm{~m}^{\wedge} 2^{*} \mathrm{k}\right) / \mathrm{W}$	Cmin:	34.68166026 BTU/Rs
R"(f) (WW) (US Customary)	4.0884 ($\mathrm{s}^{*} \mathrm{ft}^{\wedge} \mathrm{2}^{*} \mathrm{~F}$)/BTU	Cr	0.856091628
R"(f) (MW) (US Customary)	$2.0442\left(\mathrm{~s}^{\star} \mathrm{ft} 2^{* *} \mathrm{~F}\right) / \mathrm{BTU}$		

MW Temp Out Calculations	
T(in) (WW):	$180^{\circ} \mathrm{F}$
T (out) (WW):	$140^{\circ} \mathrm{F}$
T (in) (MW):	$60^{\circ} \mathrm{F}$
T (out) (MW):	$106.724^{\circ} \mathrm{F}$
Q=C(WW)* $\Delta T(W W):$	$1620.464872 \mathrm{BTU} / \mathrm{s}$

Internal Heat Transfer Coefficient (Wastewater) (LMTD)			
	1/2"	5/8"	
Density(WW (lbm/ft^3):	60.58	60.58	60.58
Velocity(WW) (ft/s):	3.27	2.16	1.60
ID (ft):	0.0335	0.0439	0.0522
Dynamic Viscosity (lbm/ft*s):	0.0002673	0.0002673	0.0002673
Re:	24814	21527	18959
Pr:	2.52	2.52	2.52
Nu :	99.52	88.82	80.24
Kwater (BTU/(s*t $\left.{ }^{*}{ }^{*} \mathrm{~F}\right)$):	0.000106	0.000106	0.000106
h(i) (BTU/(s*tt^2**F)):	0.31492	0.21441	0.16306

Internal Heat Transfer Coefficient (Wastewater) ($\varepsilon-N T U$)			
	1/2"	5/8"	
Density(WW (lbm/ft^3):	60.58	60.58	60.58
Velocity(WW) (ft/s):	3.27	2.16	1.60
ID (ft):	0.0335	0.0439	0.0522
Dynamic Viscosity (lbm/ft*s):	0.0002673	0.0002673	0.0002673
Re:	24814	21527	18959
Pr:	2.52	2.52	2.52
Nu :	99.52	88.82	80.24
Kwater (BTU/(s*tt $\left.{ }^{\star}{ }^{\circ} \mathrm{F}\right)$):	0.000106	0.000106	0.000106
h(i) (BTU/($\left.\mathrm{s}^{\star f t} 2^{* *} \mathrm{~F}\right)$):	0.31492	0.21441	0.16306

External Heat Transfer Coefficient (Make-up Water)				
	1/2"	5/8"	3/4"	
Density(MW) (lbm/ft^3):	61.92	61.92	61.92	
Velocity(MW) (ft/s):	3	3	3	
OD (ft):	0.0417	0.0521	0.0625	
Dynamic Viscosity (lbm/(ft*s)):	0.0005517	0.0005517	0.0005517	
Re	14029	17536	21044	
C	0.193	0.193	0.193	$\operatorname{Re} 4000<\mathrm{Re}$ <
m	0.618	0.618	0.618	40000: Table 7.2
Pr:	5.59	5.59	5.59	
Nu	125.19	143.70	160.84	
Kwater (BTU/(s*ft* ${ }^{*} \mathrm{~F}$):	0.000098	0.000098	0.000098	
$\mathrm{h}(0)\left(\mathrm{BTU} /\left(\mathrm{s}^{\star f t}{ }^{\wedge} \mathrm{2}^{*} \mathrm{~F}\right)\right.$:	0.29575	0.27158	0.25331	

LMTD Method to Find UA	
LMTD:	$76.5888^{\circ} \mathrm{F}$
P	0.3333
R	1.1681
F	0.95
$\mathrm{UA}=\mathrm{Q} /\left(\mathrm{F}^{*} \mathrm{LMTD}\right):$	$22.27155768 \mathrm{BTU} /\left({ }^{\circ} \mathrm{F}-\mathrm{s}\right)$

ε-NTU Method to Find UA	
Qmax $=\mathrm{Cmin}^{*}(\Delta T$ (in) $)$	4161.799 BTU/s
$\varepsilon=\mathrm{Q} / \mathrm{Qmax}$	0.389366
Model HX as cross-flow with mi	d shell (Cmin mixed)
$C_{\text {min }}$ (mixed), $C_{\text {max }}$ (unmixed)	$\mathrm{NTU}=-\left(\frac{1}{C_{r}}\right) \ln \left[C_{r} \ln (1-\varepsilon)+1\right]$
NTU	0.640885
$U A=N T U * C$ min	$22.22694 \mathrm{BTU} /\left({ }^{\circ} \mathrm{F}\right.$ *s)

Number of Tubes Calculation			
	1/2" 5/8"		3/4"
$\mathrm{h}(\mathrm{i})\left(\mathrm{BTU} /\left(\mathrm{s}^{*} \mathrm{f}^{\wedge} 2^{* *} \mathrm{~F}\right)\right.$) (LMTD):	0.3149	0.2144	0.1631
h(i) (BTU/(s*ft $\left.{ }^{\star}{ }^{*} \mathrm{~F}\right)$) (ε-NTU):	0.3149	0.2144	0.1631
$\mathrm{h}(\mathrm{o})\left(\mathrm{BTU} /\left(\mathrm{s}^{\star t} \mathrm{t}^{\wedge} 2^{* *} \mathrm{~F}\right)\right.$:	0.2957	0.2716	0.2533
$\left.\mathrm{R}^{\prime \prime}(\mathrm{f})(\mathrm{i})\left(\mathrm{s}^{*} \mathrm{ft}^{\wedge} \mathrm{2}^{* *} \mathrm{~F}\right) / \mathrm{BTU}\right)$	4.0884	4.0884	4.0884
$\left.\mathrm{R}^{\prime \prime}(\mathrm{f})(0)\left(\mathrm{s}^{*} \mathrm{t}^{\wedge} 2^{* *} \mathrm{~F}\right) / \mathrm{BTU}\right)$	2.0442	2.0442	2.0442
D (i) (ft)	0.0335	0.043916667	0.052166667
D(0) (ft)	0.0417	0.0521	0.0625
$\mathrm{k}(304)\left(\mathrm{BTU} /\left(\mathrm{sft}^{\circ} \mathrm{F}\right)\right.$)	0.0024	0.0024	0.0024
L (ft)	12	12	12
(A) (LMTD)	2.5143	2.8171	3.1184
(A) (ε-NTU)	2.5143	2.8171	3.1184
(B)	1.3014	1.0411	0.8676
(C)	1.2099	0.9459	1.0023
(D)	3.2372	2.4694	2.0789
(E)	2.1526	1.8753	1.6755
1/UA (for one tube) (LMTD)	10.4154	9.1488	8.7426
1/UA (for one tube) (ε-NTU)	10.4154	9.1488	8.7426
UA for one tube (LMTD method)	0.0960	0.1093	0.1144
UA for one tube (ε-NTU method)	0.0960	0.1093	0.1144
Number of Tubes (LMTD)	232	204	195
Number of Tubes (ε-NTU)	232	204	195

Givens	
Steam Flowrate (lbm/hr)	125000
Initial Steam Pressure (psia)	414.7
Initial Steam Temp (${ }^{\circ} \mathrm{F}$)	700
Turbine Efficiency	0.65
Turbine Exhaust Pressure (psia)	74.7
Secondary HX UA (BTU/hr*$\left.{ }^{\star} \mathrm{F}\right)$	150000
Current MW Inlet T $\left({ }^{\circ} \mathrm{F}\right)$	60
Desired MW Outlet T $\left({ }^{\circ} \mathrm{F}\right)$	140
New MW Inlet T $\left({ }^{\circ} \mathrm{F}\right)$	106.724
MW Pressure (assumed) (psia)	100
MW Flowrate (gpm)	250
MW Flowrate (ft^3/hr)	2005.208
Density of MW from City (lbm/ft^3)	62.38358
MW Mass Flowrate (lbm/hr)	125092.1
Exit Density of MW (lbm/ft^3)	61.39583

Steam Turbine Calculations	
Specific entropy of steam entering turbine (BTU/(lb*$\left.\left.{ }^{\circ} \mathrm{F}\right)\right)$	1.636721624
$\mathrm{~h}(1)(\mathrm{BTU} / \mathrm{lb})(\mathrm{h}$ of steam entering turbine)	1362.017744
$\mathrm{~h}(2 \mathrm{~s})(\mathrm{BTU} / \mathrm{lb})(\mathrm{h}$ of steam leaving perfect isentropic turbine)	1188.951415
$\mathrm{~h}(2)=\mathrm{h}(1)-\mathrm{n}(\mathrm{h}(1)$-h(2s)) (BTU/lb) (h of steam leaving turbint	1249.52
Temperature of steam leaving turbine ($\left.{ }^{\circ} \mathrm{F}\right)$	435.3695235
$\eta=\frac{h_{1}-h_{2}}{h_{1}-h_{2 s}}$	

SavingS	
Steam Savings (lbm/hr)	5996.81562
Boiler Efficiency	83%
Cost of Gas for Boiler (\$/BTU)	$\$ 0.000005$
Enthalpy of Boiler FW (BTU/lb)	28.11959366
Enthalpy of Steam (BTU/lb)	1362.017744
Q to Heat Saved Water (BTU/hr)	7999141.263
Q of Saved Gas (BTU/hr)	9637519.594
Cost Savings for Gas (\$/hr)	$\$ 48.19$
Operating Hours per Year	6000
Cost Savings per Year	$\$ 289,125.59$
Assume boiler feed water is at 14.7psia, $60^{\circ} \mathrm{F}$	

Current Scenario

$T(\mathrm{avg})$ of MW $\left({ }^{\circ} \mathrm{F}\right)$	100
cp of MW at T $(\mathrm{avg})\left(\mathrm{BTU} /\left(\mathrm{lbm}{ }^{* \circ} \mathrm{~F}\right)\right)$	0.997702
C of MW $\left(\mathrm{BTU} /\left(\mathrm{hr}{ }^{* \circ} \mathrm{~F}\right)\right)$	124804.6
Q (BTU/hr)	9984364
Steam inlet temperature (${ }^{\circ} \mathrm{F}$)	435.3695
Steam inlet enthalpy h(in) (BTU/lbm)	1249.52
Steam outlet temp (Tsat@60psig) $\left({ }^{\circ} \mathrm{F}\right)$	307.3208
Steam outlet enthalpy h(out) (BTU/lbm)	277.3121
Steam mass flowrate $=\mathrm{Q} /(\mathrm{h}(\mathrm{in})-\mathrm{h}(\mathrm{out}))(\mathrm{lbm} / \mathrm{hr})$	10269.73

With Added Recovery HX	
T(avg) of MW (${ }^{\circ} \mathrm{F}$)	123.362
cp of MW at T(avg) (BTU/(lbm**F))	0.997986
C of MW (BTU/(hr*o ${ }^{\text {\% }}$)	124840.2
Q (BTU/hr)	4154185
Steam inlet temperature (${ }^{\circ} \mathrm{F}$)	435.3695
Steam inlet enthalpy (BTU/lb)	1249.52
Steam outlet temp (Tsat@60psig) (${ }^{\circ} \mathrm{F}$)	307.3208
Steam outlet enthalpy h(out) (BTU/lb)	277.3121
Steam mass flowrate $=$ Q/(h(in)-h(out)) (lbm/hr)	4272.918

Given Values and Basic Calculations/Conversions

In Place Now		Planned		
Inlet Height (ft)	10	HX Height (ft)	37	
Pump Height (ft)	12	Total Length Before HX (ft)	213	Assume HX bypass in
Valve Height (ft)	37	Total Length After HX (ft)	208	center of 200ft line
Outlet Height (ft)	7	HX Tube Roughness (ft)	0.000005	(Table 8.1, Munson)
Total Pipe Length (ft)	385	HX Tube Length (ft)	12	
Pipe Diameter (in)	4	Tube Specific \#s:	1/2"	5/8" 3/4"
Pipe Roughness (ft)	0.00015 (Table 8.1, Munson)	Tube Inner Diameter (in)	0.402	$0.527 \quad 0.626$
Pit Temperature (degF)	180	\# of Tubes	232	204195
Inlet Pressure (psig)	0	Relative Roughness	0.000149254	0.0001140 .0000958
Outlet Pressure (psig)	0	Flowrate thru each Tube ($\mathrm{ft}^{\wedge} 3 / \mathrm{s}$)	0.002881	0.0032760 .003428
Flowrate @180F (GPM)	300	C.S. Area of 1 Tube ($\mathrm{ft}^{\wedge} 2$)	0.000881	0.0015150 .002137
Flowrate @180F (ft^3/s)	0.6684	Velocity thru Tube (ft/s)	3.269	2.1631 .604
Impeller Diameter (in)	8	Re	24814	2152718959
Average Water Velocity thru Pipe @180F (ft/s)	7.659	1/sqrt(f)	6.364135513	6.2658536 .172904203
Pump Head (ft)	62	Darcy friction factor f	0.024690004	$0.025471 \quad 0.02624345$
Pump Power (hp)	7.6			
Pump NPSH (ft)	8 (from pump curve)			
Pump Shutoff Head (ft)	69			
Pump Speed (RPM)	1750		Ower/Cost	culations
Relative Roughness	0.00045		Cost of Electricity(\$/kWh)	\$ 0.07
Water Density @180F (lbm/ft^3)	60.5790		hp to kW Conversion (hp/kW)	1.341
Dynamic Viscosity @180F (lb/ft/hr)	0.8340		Pump Power (kW)	5.667
Dynamic Viscosity @180F (lb/ft/s)	0.0002317		Hourly Pump Electricity Cost	\$ 0.40
Re in Pipe @180F	667642		Plant Uptime per Year (hr)	6000
1/sqrt(f) @180F	7.6609		Yearly Pump Electricity Cost	\$ 2,380.31
Darcy friction factor f @180F	0.017039		Same pump operating at same	flowrate (thanks to the
Acceleration due to gravity ($\mathrm{ft} / \mathrm{s}^{\wedge} 2$)	32.2		control valve); same power co	nsumption! No increase
Water Density @140F (lbm/ft^3)	61.378		in pump shaft work or	electricity costs
Flowrate @140F (ft^3/s)	0.6597			
Average Water Velocity thru Pipe @140F (ft/s)	7.560			
Dynamic Viscosity @140F (lb/ft/hr)	1.128			
Dynamic Viscosity @140F (lb/ft/s)	0.0003134			
Re in Pipe @140F	493491			
1/sqrt(f) @140F	7.611			
Darcy friction factor f @140F	0.017262			

K Calculations (Existing System)			
$\frac{P_{1}}{\rho g}+z_{1}+H_{\text {pump }}=\frac{P_{2}}{\rho g}+z_{2}+H_{\text {turb }}+\frac{v^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)$		K values (Existing System)	
			0.017
	Solver: Change J9 to make difference between J10 and$J 11=0$	Elbow (x7)	3.57
Solve for sum of K:		Sharp Exit (x1)	1
K (solve for): 51.67467		Gate Valve	0.136
LHS: 72			
RHS: 72		K CV	46.469

K Calculations (Planned System)			
Solve for sum of K for each tube size:	Solver: Change J24:L24 in order to make the sum of the squared differences between J25:L25 and J26:L26 = 0	K values (HX Tube)	
		Sharp Inlet (x1)	0.5
		Sharp Exit (x1)	
		K values (New S	re HX$)$
		fT	0.017
		Sharp Inlet (x1)	0.5
		Sharp Exit (x1)	1
Control valve ensures that overall head loss is always equal to pump head rise + height difference $(z 1-z 2)$ for all tube sizes! Overall Head Loss (ft) 65		Elbow (x5)	2.55
		Branch Tee (x1)	1.02
		Gate Valve	0.136
		K values (New System after HX)	
		Sharp Inlet (x1)	0.5
		Branch Tee (x1)	1.02
		Elbow (x4)	2.04

NPSH Problems Calculations

$$
z_{\max }=\frac{p_{\text {atm }}}{\gamma}-\frac{v^{2}}{2 g}\left(\frac{f L}{D}+\Sigma K\right)_{\text {before pump }}-\frac{p_{v}}{\gamma}-N P S H_{R}
$$

	How far into pit can we pump?
L before pump (ft)	15 Assume pump is posi
Sum K before pump	1.01 either side before elbows)
NPSHr of pump (tt)	8 边
Water vapor pressure (psia)	7.5196
Water specific gravity (lbf/ft^3)	60.579
Velocity (tt/s)	7.6593
Acceleration due to gravity ($\mathrm{t} / \mathrm{s}^{\wedge} 2$)	32.2
Atmospheric pressure (psia)	14.7
Z_max (ft)	7.450
Pump can only pump 7.45 ft down from pump height w/o cavitation: leaves 2.55 ft above inlet To pump to pipe inlet ($z=10 \mathrm{ft}$): Max allowable NPSH (ft) 5.449734 Too small: impossible for this pump at this speed to have this NPSH scales with v --> scales with Q low an NPSHr To reduce NPSH, reduce flowrate - affinity laws say that to reduce flowrate, reduce speed (install VFD) or impeller diameter (shave impeller); could also install temporary sump pump when cleaning	

Economic Calculations							
Cost	Amount						Frequency
		ubing		" Tubing		Tubing	
Tubing	\$	15,757.44	\$	14,761.44	\$	16,192.80	Initial
Shell	\$	15,000.00	\$	18,000.00	\$	21,000.00	Initial
Installation	\$	4,640.00	\$	4,080.00	\$	3,900.00	Initial
Overall Initial Cost	\$	35,397.44	\$	36,841.44	\$	41,092.80	Initial
Cleaning	\$	2,320.00	\$	2,040.00	\$	1,950.00	Quarterly
Convert to yearly:	\$	9,280.00	\$	8,160.00	\$	7,800.00	Yearly
Lost Power Prod.	\$	83,036.47	\$	83,036.47	\$	83,036.47	Yearly
Benefits				Amount			Frequency
Gas Savings		9,125.59		\$289,125.59		\$289,125.59	Yearly
Salvage (year zero \$)	\$	8,849.36	\$	9,210.36	\$	10,273.20	End
Salvage (20 yrs of inflation)	\$	15,982.93	\$	16,634.93	\$	18,554.54	End
Salvage (Y0 w/ interest):	\$	6,023.80	\$	6,269.53	\$	6,993.01	Initial
Net Yearly Benefit NYB:		96,809.12		\$197,929.12		\$198,289.12	Yearly
Overall Initial Cost	\$	35,397.44)	\$	(36,841.44)	\$	$(41,092.80)$	Initial
Present Worth of NYB		42,014.98		3,159,895.53		,165,642.86	Initial
Present Worth of Salvage	\$	6,023.80	\$	6,269.53	\$	6,993.01	Initial
NPV		12,641.33	\$	3,129,323.62		3,131,543.07	
Simple Payback Pd (yrs)		0.1799		0.1861		0.2072	
Simple Payback Pd (mths)		2.1583		2.2336		2.4868	

Power Production Calculations	
Existing System	
Energy output of turbine (Btu/lb)	112.49
Steam flowrate through turbine (lbm/hr)	125000
Power output of turbine (Btu/hr)	14061639.23
Power output of turbine (kW)	4121.059655
W/ Recovery HX	
Energy output of turbine (Btu/lb)	112.49
Steam flowrate through turbine (lbm/hr)	119003.1844
Power output of turbine (Btu/hr)	13387038.77
Power output of turbine (kW)	3923.353776
Power production lost (kW)	197.7058793
Yearly Power Production Lost (kWh)	1186235.276
Project Parameters	
Cost per kWh	\$ 0.07
Yearly Uptime (hrs)	6000
Discount Rate	5\%
Life (years)	20
Inflation Rate	3\%
Effective Interest Rate	1.94\%

6.3 Bibliography

Bergman, T.L., Lavine, A.S., Incropera, F.P., Dewitt, D.P. (2011). Fundamentals of Heat and Mass Transfer (7th ed.). John Wiley \& Sons, Inc.

Engineering Department. (1991). Flow of Fluids through Valves, Fittings, and Pipe. Crane Co. Technical Paper No. 410.

Goulds Pumps. (2019). Model JC 3X4-11 Pump Curve. ITT.
Holmgren, Magnus. (1996). IAPWS IF97 Excel Steam Tables. X Steam Version 2.4 English Unit. url=http://www.x-eng.com.

Munson, B.R., Young, D.F., Okiishi, T.H., Huebsch, W.W. (2009). Fundamental of Fluid Mechanics (6th ed.). John Wiley \& Sons, Inc.

Newnan, D.G., Lavelle, J.P., Eschenbach, T.G. (2013). Engineering Economic Analysis (12th ed.). Oxford University Press.

Terry, Stephen. (2020). Spring 2020 Semester Design Project Piping Sketch. MAE 412-1 Design of Thermal Systems. Department of Mechanical and Aerospace Engineering. North Carolina State University.

Terry, Stephen. (2020). Spring 2020 Semester Design Project Problem Statement. MAE 412-1 Design of Thermal Systems. Department of Mechanical and Aerospace Engineering. North Carolina State University.

